c0der
- 52
- 0
From the Eulerian form of the continuity equation, where x is the Eulerian coordinate:
\frac {\partial \rho}{ \partial t } + u \frac {\partial \rho}{\partial x} + \rho \frac { \partial u}{\partial x} = 0
The incremental change in mass is, where m is the Lagrangian coordinate:
dm = \rho dx
The specific volume is:
V = \frac{1}{\rho}
How does one get the final form of the continuity equation in Lagrangian coordinates as follows:
\frac{\partial V}{\partial t} = \frac{\partial u}{\partial m}
\frac {\partial \rho}{ \partial t } + u \frac {\partial \rho}{\partial x} + \rho \frac { \partial u}{\partial x} = 0
The incremental change in mass is, where m is the Lagrangian coordinate:
dm = \rho dx
The specific volume is:
V = \frac{1}{\rho}
How does one get the final form of the continuity equation in Lagrangian coordinates as follows:
\frac{\partial V}{\partial t} = \frac{\partial u}{\partial m}