- #1

- 3

- 0

Hi there,

A quick question concerning the FFT. Let's say I explicitly know a 2D function [tex]\tilde{f}\left(\xi_1,\xi_2 \right)[/tex] in the frequency domain.

If I want to know the values of [tex]f\left(x_1,x_2 \right)[/tex] in the time domain at some specific times, I can calculate [tex]\tilde{f}[/tex] at [tex]N_j[/tex]discrete frequencies (i.e. [tex]\xi_j=0, \xi_j=1/(N_j \Delta_j),...,\xi_j=\pm 1/(2 \Delta_j),...,\xi_j=-1/(N_j \Delta_j)[/tex]) and then use the inverse DFT.

My problem is the following, at the Nyquist frequencies (if [tex] \xi_1=\pm 1/(2 \Delta_j)[/tex] and/or [tex] \xi_2=\pm 1/(2 \Delta_j)[/tex]), what frequency values do I have to use to calculate [tex]\tilde{f}[/tex] ? [tex] +1/(2 \Delta_j)[/tex] or [tex] -1/(2 \Delta_j)[/tex] ?

This choice matters since they are not the same... For instance, if the frequency is not correctly chosen, then [tex]f[/tex] is not real though [tex]\tilde{f}\left(\xi_1,\xi_2 \right)=\tilde{f}\left(-\xi_1,-\xi_2 \right)[/tex]

A quick question concerning the FFT. Let's say I explicitly know a 2D function [tex]\tilde{f}\left(\xi_1,\xi_2 \right)[/tex] in the frequency domain.

If I want to know the values of [tex]f\left(x_1,x_2 \right)[/tex] in the time domain at some specific times, I can calculate [tex]\tilde{f}[/tex] at [tex]N_j[/tex]discrete frequencies (i.e. [tex]\xi_j=0, \xi_j=1/(N_j \Delta_j),...,\xi_j=\pm 1/(2 \Delta_j),...,\xi_j=-1/(N_j \Delta_j)[/tex]) and then use the inverse DFT.

My problem is the following, at the Nyquist frequencies (if [tex] \xi_1=\pm 1/(2 \Delta_j)[/tex] and/or [tex] \xi_2=\pm 1/(2 \Delta_j)[/tex]), what frequency values do I have to use to calculate [tex]\tilde{f}[/tex] ? [tex] +1/(2 \Delta_j)[/tex] or [tex] -1/(2 \Delta_j)[/tex] ?

This choice matters since they are not the same... For instance, if the frequency is not correctly chosen, then [tex]f[/tex] is not real though [tex]\tilde{f}\left(\xi_1,\xi_2 \right)=\tilde{f}\left(-\xi_1,-\xi_2 \right)[/tex]

Last edited: