MHB Contour Integrals - Example 2.5, Palka, Section 2.2, Ch.4 .... ....

Click For Summary
The discussion centers on understanding the inequality sin(u) ≥ (2u/π) for 0 ≤ u ≤ π/2, as presented in Bruce P. Palka's book on complex function theory. Participants highlight that the sine function is concave on this interval, which implies that the line segment connecting the origin to the point (π/2, 1) lies below the sine curve. This concavity is confirmed by the second derivative of the sine function being non-positive in the specified range. Visual representations of the sine function and the line further illustrate this relationship. Overall, the concavity of the sine function is key to proving the stated inequality.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Bruce P. Palka's book: An Introduction to Complex Function Theory ...

I am focused on Chapter 4: Complex Integration, Section 2.2 Properties of Contour Integrals ...

I need help with an aspect of Example 2.5,Section 2.2, Chapter 4 ...

Example 2.5, Chapter 4 reads as follows:View attachment 7435In the above text from Palka, we read the following:" ... ... But $$\text{ sin } u \ge 2u/ \pi \text{ whenever } 0 \le u \le \pi / 2$$ ... ... "Can someone please explain exactly why/how $$\text{ sin } u \ge 2u/ \pi \text{ whenever } 0 \le u \le \pi / 2$$ ... ... ?
Help will be much appreciated ...

Peter
 
Physics news on Phys.org
Peter said:
In the above text from Palka, we read the following:" ... ... But $$\text{ sin } u \ge 2u/ \pi \text{ whenever } 0 \le u \le \pi / 2$$ ... ... "Can someone please explain exactly why/how $$\text{ sin } u \ge 2u/ \pi \text{ whenever } 0 \le u \le \pi / 2$$ ... ... ?

Consider the graphs below.

[DESMOS=-0.5496108949416503,1.9503891050583497,-0.1562499999999729,2.343750000000027]\sin\ x;\frac{2x}{\pi}[/DESMOS]

Notice the sine wave lies above the green line from $x = 0$ to $x = \pi/2$, where the sine reaches its peak. The equation of the line passing through the origin and $(\pi/2, 1)$ is indeed $y = (2/\pi)x$. So we have $\sin x \ge (2/\pi)x$ whenever $0 \le x \le \pi/2$.
 
Euge said:
Consider the graphs below.
Notice the sine wave lies above the green line from $x = 0$ to $x = \pi/2$, where the sine reaches its peak. The equation of the line passing through the origin and $(\pi/2, 1)$ is indeed $y = (2/\pi)x$. So we have $\sin x \ge (2/\pi)x$ whenever $0 \le x \le \pi/2$.
OK Thanks Euge ... can see that ...

Mind you ... I still have no idea how one would prove the inequality is true ...

Peter
 
I was hinting at concavity of the sine function on the interval $[0, \pi/2]$. Since $(\sin x)'' = -\sin x \le 0$ over $[0, \pi/2]$, the sine is concave in that interval. Hence, the line segment joining any two points in $[0, \pi/2]$ on the sine graph must lie below the sine graph. In particular, the line segment from the origin to $(\pi/2, 1)$ must be below the graph of the sine on $[0, \pi/2]$, which means $(2/\pi)x \le \sin x$ for all $x\in [0, \pi/2]$.
 
Euge said:
I was hinting at concavity of the sine function on the interval $[0, \pi/2]$. Since $(\sin x)'' = -\sin x \le 0$ over $[0, \pi/2]$, the sine is concave in that interval. Hence, the line segment joining any two points in $[0, \pi/2]$ on the sine graph must lie below the sine graph. In particular, the line segment from the origin to $(\pi/2, 1)$ must be below the graph of the sine on $[0, \pi/2]$, which means $(2/\pi)x \le \sin x$ for all $x\in [0, \pi/2]$.
Thanks for a MOST helpful post, Euge ...

Sorry that I did not pick up on your hint regarding concavity ...

Peter
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K