Convergence and Divergence - Calculus 2

Click For Summary
SUMMARY

The discussion focuses on convergence and divergence in Calculus 2, specifically regarding alternating series and various convergence tests. The user expresses difficulty in applying the nth root test and the ratio test, suggesting the need for alternative methods such as the comparison test and the divergence test. Key insights include the confirmation that if the non-alternating part is positive and decreasing, it suffices to check if it approaches zero as n approaches infinity. The user also learns that both sin(1/n) and (1 + 4/n)^n diverge based on the divergence test.

PREREQUISITES
  • Understanding of alternating series
  • Familiarity with convergence tests such as the nth root test and ratio test
  • Knowledge of the comparison test and divergence test
  • Basic concepts of limits and sequences in calculus
NEXT STEPS
  • Study the application of the comparison test in detail
  • Learn about the divergence test and its implications for series
  • Explore the properties of alternating series and their convergence criteria
  • Investigate the behavior of sequences and limits, particularly with bounded functions
USEFUL FOR

Students preparing for Calculus 2 exams, particularly those struggling with series convergence, as well as educators seeking to clarify concepts related to alternating series and convergence tests.

balloonhf
Messages
3
Reaction score
0
Alright, I have my final for Calc 2 on Monday. I am only stuck on two sections of problems because I am terrible at convergence and divergence/alternating series.

review_zps3efbf6aa.png


alternating_zpsd0d6dbb8.png


I have questions for each one really. They are as follows:
4)
a. Can I simply factor out the alternating series and apply a test since the alternating portion is constant?
b. Similar to my question from a.
c. Not sure of what test to apply for convergence tests. I have tried both the nth root test and the ratio test and neither work.
d. Similar to my question from c.

5)
a) Again can I factor out the alternating series and say that it is similar to 1/(n)^(1/2) and 1/2<1 so it diverges.
b) and c) - I have literally no idea.
d)Same as a in that I want to know if i can factor out the constant alternating section
e) and f) - No idea

I have a general idea on most problems. Most of my questions are on the same thing that I need confirmed. Also I know the tests for Absolute and Conditionally convergent.

Any sort of help or confirmation on my assumptions is greatly appreciated.
 
Physics news on Phys.org
balloonhf said:
a. Can I simply factor out the alternating series and apply a test since the alternating portion is constant?
b. Similar to my question from a.

See this .
c. Not sure of what test to apply for convergence tests. I have tried both the nth root test and the ratio test and neither work.

Here you can use the comparison test .
d. Similar to my question from c.

Try the divergence test .

5)
a) Again can I factor out the alternating series and say that it is similar to 1/(n)^(1/2) and 1/2<1 so it diverges.
b) and c) - I have literally no idea.
d)Same as a in that I want to know if i can factor out the constant alternating section

If the non-alternating part is positive and decreasing , then it is sufficient to test whether it goes to 0 as n goes to infinity.

e) and f) - No idea

Try the divergence test on e , and f can be simplified a little ,see how ?
 
ZaidAlyafey said:
See this .

For a. Can I just state that sin is bounded by -1 to 1 and therefore does not exist?

I went to the link you provided. I set bn=sin(1/n) and the limit does not equal 0, and therefore does not converge?

Also the same with b. Since the lim of bn which would be (1 +4/n)^n would also = 1 and not converge.

edit: reading further and discovered the next step.

Alright so by the divergence test as well I can confirm that both A and B diverge?
 
Last edited:
ZaidAlyafey said:
Here you can use the comparison test .

For C I tried setting bn=1/(n^(2) -1) and took the limit to get that it goes to 0. Since bn is not greater than 0 an also converges.

Yes?
If so then I did the same thing for D and got the same answer.
 
Last edited:
balloonhf said:
For a. Can I just state that sin is bounded by -1 to 1 and therefore does not exist?

I went to the link you provided. I set bn=sin(1/n) and the limit does not equal 0, and therefore does not converge?

Also the same with b. Since the lim of bn which would be (1 +4/n)^n would also = 1 and not converge.

edit: reading further and discovered the next step.

Alright so by the divergence test as well I can confirm that both A and B diverge?

Sorry, the first question is regarding sequences . So you test sin(1/n) as n goes to infinity , what is the limit ?
 
balloonhf said:
For C I tried setting bn=1/(n^(2) -1) and took the limit to get that it goes to 0. Since bn is not greater than 0 an also converges.

Yes?
If so then I did the same thing for D and got the same answer.

$$\frac{\ln (n)}{n^2-1}< \frac{n}{n^2-1}$$

Sine the later converges , by comparison test the previous converges .
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
3
Views
1K