Convergence and stability in multivariate fixed point iteration

Click For Summary
The discussion focuses on improving convergence and stability in a multivariate fixed point iteration for a mineral processing froth flotation plant simulation. The user describes using Krasnoselskij iteration and Mann iterations, noting that while some configurations converge, others do not, and convergence can be slow. The computational intensity of the function f, which involves solving simultaneous linear equations, complicates the process, making efficient iteration crucial. The user seeks recommendations for algorithms that can enhance convergence and stability without relying on derivatives. A link to a potentially useful resource is provided for further exploration.
dhatfield
Messages
1
Reaction score
0
Hi, I'm new to posting questions on forums, so I apologise if the problem is poorly described.

My problem is solving a simulation of the state of a mineral processing froth flotation plant. In the form x@i+1 = f(x@i), f represents the flotation plant. f is a computationally intensive solution of systems of simultaneous linear equations (material balancing) and evaluation of the state of each unit in the process. x contains ~20 elements, depending on user configuration of the process.

For some (user defined) configurations of the function f, this system iterates rapidly to convergence by back-substitution ie. Picard iteration. For the last couple of years I have been using Krasnoselskij iteration (EMA filter) and the system converges in most, but not all situations. Also, convergence is slow (200+ iterations) for some configurations. Since f is computationally expensive, on the order of 10ms, calculation of a good x@i+1 is crucial. I have also investigated Mann iterations. I have implemeted Direct Inversion in the Iterative Subspace (DIIS) but still have concerns about the uniqueness of solutions from DIIS which I am investigating.

A single calculation of the Jacobian would take longer than most simulations take to converge by back-substitution.

Is there a recommended algorithm for accelerating convergence and increasing the stability of a multidimensional fixed point iteration problem without derivatives?
 
Mathematics news on Phys.org
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 16 ·
Replies
16
Views
1K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K