I have a question regarding the following definition of convergence on manifold:(adsbygoogle = window.adsbygoogle || []).push({});

Let M be a manifold with atlas A. A sequence of points [itex]\{x_i \in M\}[/itex] converges to [itex]x\in M[/itex] if

- there exists a chart [itex](U_i,\phi_i)[/itex] with an integer [itex]N[/itex] such that [itex]x\in U_i[/itex] and for all [itex]k>N,x_i\in U_i[/itex]
- [itex]\phi_i(x_k)_{k>N} \rightarrow \phi_i(x)[/itex]

Given a sphere (2-manifold) centered at origin and a sequence of points converging to the north pole. The atlas of this sphere contains two charts, which projects all the points on the lower semi-sphere [itex]U_1[/itex] (resp., upper semi-sphere [itex]U_2[/itex]) from the south pole (resp., north pole) to the x-y plane, i.e.,

[tex]\phi_1(x_1,x_2,x_3)=\langle \frac{x_1}{1+x_3}, \frac{x_2}{1+x_3} \rangle[/tex]

[tex]\phi_2(x_1,x_2,x_3)=\langle \frac{x_1}{1-x_3}, \frac{x_2}{1-x_3} \rangle[/tex]

Since the sequence of points converge to the north pole, we can find an N such that [itex]x_k \in U_2, k > N[/itex]; however, [itex]\phi_2(x_k) \rightarrow \infty[/itex], which means this sequence is not convergent. How come?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Convergence of a sequence of points on a manifold

**Physics Forums | Science Articles, Homework Help, Discussion**