1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Convergence of Infinite Series

  1. Sep 9, 2007 #1
    1. The problem statement, all variables and given/known data
    1+ [tex]\frac{\alpha\beta}{\gamma}[/tex] x + [tex]\frac{\alpha (\alpha+1)\beta(\beta+1)}{1.2.\gamma(\gamma+1)}[/tex][tex]x^{2}[/tex]+.....

    2. Relevant equations

    3. The attempt at a solution
    Using D'Alembert's ratio test, I get [tex]lim_{n\rightarrow\infty}[/tex][tex]\frac{U_{n+1}}{U_{n}}[/tex]=x
    so, x>1 diverging series
    x<1 converging series
    when x=1, Using Raabe's test I get
    so, Series Converges if [tex]\gamma-\alpha-\beta[/tex]>1
    and diverges if [tex]\gamma-\alpha-\beta[/tex]<1

    However the book has given the answer to be
    coverges if [tex]\gamma-\alpha-\beta[/tex]>0
    and diverges if [tex]\gamma-\alpha-\beta[/tex]<0

    Can anyone point out my mistake, please?
    Last edited: Sep 9, 2007
  2. jcsd
  3. Sep 9, 2007 #2

    Gib Z

    User Avatar
    Homework Helper

  4. Sep 9, 2007 #3


    User Avatar
    Science Advisor

    For Raabe's test wtih x=1, I get
    [tex]\lim_{n\rightarrow\infty}n\!\left({\textstyle{U_{n}\over U_{n+1}}-1\right)=\gamma-\alpha-\beta+1[/tex]
  5. Sep 9, 2007 #4
    My expression for [tex]U_{n}[/tex] = [tex]\frac{1.\alpha...(\alpha + n-1) 1.\beta...(\beta+n-1)}{1.2...(n-1) 1.\gamma...(\gamma+n-1)}[/tex]

    Using this I get [tex]\gamma-\alpha-\beta[/tex] from Raabe's test
    Last edited: Sep 9, 2007
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Convergence of Infinite Series
  1. Infinite series (Replies: 2)

  2. Convergent series (Replies: 1)