Convergence Proofs for Sequences: How Do Limits and Converse Statements Work?

Click For Summary
The discussion focuses on proving the convergence of specific sequences. The first problem involves showing that the sequence sqrt(n+1) - sqrt(n) converges to 0, with suggestions to manipulate the expression for clarity. The second problem asks to prove that if the even and odd subsequences converge to the same limit A, then the entire sequence converges to A, with some uncertainty about the correct limit. The third problem explores the relationship between sequences {an} and {bn} defined as (an)^(1/n), questioning the implications of {bn} converging to 1 on the convergence or divergence of {an}. Overall, participants are seeking clarification on convergence proofs and proper methods to approach these problems.
WTBash
Messages
2
Reaction score
0

Homework Statement


1. Prove that the sequence sqrt(n+1) - sqrt(n) converges to 0.
2. If sequence {an} is composed of real numbers and if lim as n goes to infinity of {a2n} = A and the limit as n goes to infinity of {a(2n-1)} = A, prove that {an} converges to 1. Is converse true?
3. Consider sequences {an} and {bn}, where bn = (an)^(1/n)
a. If {bn} converges to 1, does the sequence {an} necessarily converge?
b. If {bn} converges to 1, does the sequence {an} necessarily diverge?
c. does {bn} have to converge 1?


Homework Equations





The Attempt at a Solution


I'm not sure if I can divide sqrt(n) by sqrt(n) and prove that this new sequence goes to 1 without a loss of generality. As for the others, I am new to these proofs and any help would be much appreciated.
 
Physics news on Phys.org
WTBash said:

Homework Statement


1. Prove that the sequence sqrt(n+1) - sqrt(n) converges to 0.
2. If sequence {an} is composed of real numbers and if lim as n goes to infinity of {a2n} = A and the limit as n goes to infinity of {a(2n-1)} = A, prove that {an} converges to 1. Is converse true?
3. Consider sequences {an} and {bn}, where bn = (an)^(1/n)
a. If {bn} converges to 1, does the sequence {an} necessarily converge?
b. If {bn} converges to 1, does the sequence {an} necessarily diverge?
c. does {bn} have to converge 1?


Homework Equations





The Attempt at a Solution


I'm not sure if I can divide sqrt(n) by sqrt(n) and prove that this new sequence goes to 1 without a loss of generality. As for the others, I am new to these proofs and any help would be much appreciated.
1. Certainly you can divide sqrt(n) by itself, as long as n is not 0, but why would you want to do this? Even if you did want to do this, it would be trivial to prove that the limit of that sequence {sqrt(n)/sqrt(n)} is 1.

Instead, what about multiplying the numerator and denominator by sqrt(n+1) + sqrt(n)? You'd be multiplying by 1, so this won't change the value of the terms in the sequence.

2. If all the even-subscript terms in the sequence are approaching A, and the odd-subscript terms are doing the same thing, you're going to have a difficult time proving the sequence converges to 1.
 
WTBash said:

Homework Statement


1. Prove that the sequence sqrt(n+1) - sqrt(n) converges to 0.
2. If sequence {an} is composed of real numbers and if lim as n goes to infinity of {a2n} = A and the limit as n goes to infinity of {a(2n-1)} = A, prove that {an} converges to 1. Is converse true?
3. Consider sequences {an} and {bn}, where bn = (an)^(1/n)
a. If {bn} converges to 1, does the sequence {an} necessarily converge?
b. If {bn} converges to 1, does the sequence {an} necessarily diverge?
c. does {bn} have to converge 1?


Homework Equations





The Attempt at a Solution


I'm not sure if I can divide sqrt(n) by sqrt(n) and prove that this new sequence goes to 1 without a loss of generality. As for the others, I am new to these proofs and any help would be much appreciated.
There is no reason to do that. As Mark44 said, multiply "numerator and denominator" by sqrt{n+1}+ sqrt{n}.

For problem two are you sure it didn't say "prove that {an} converges to A"? That would make a lot more sense.
 
Last edited by a moderator:
Wouldn't you just use the def of convergence to prove No. 1
 
need a little help with Xn= (cos n)/(n^3-n^2) and what it converges to.
 
shrug said:
need a little help with Xn= (cos n)/(n^3-n^2) and what it converges to.
Do NOT add new problems to someone else's threads. Start your own thread.

Here's a hint: -1\le cos(n)\le 1. Of course, you are assuming n> 1.
 
Sorry I am a newbie!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K