MHB Converse, Contrapositive and Negation for multiple Quantifiers

Sandra Tan
Messages
1
Reaction score
0
If every printer is busy then there is a job in the queue.

where B(p) = Printer p is busy and Q(j) = Print job j is queued.

When it's translated to symbol, we'll have (∀pB(p)) → (∃jQ(j)).

I'm trying to translate this statement to both English and symbol forms for Converse, Contrapositive and Negation.

Following is what i have got so far:
Converse
in words: If there is a job in the queue, then every printer is busy.
in symbol: (∃jQ(j)) → (∀pB(p))

Contrapositive
in words: If there is no job in the queue, then not every printer is busy.
in symbol: ¬(∃jQ(j)) → ¬(∀pB(p))

Negation
in words: Every printer is busy and there is no job in the queue.
in symbol: (not sure)

It's the symbol part that I'm not sure if they are correct or not. Any advice would be appreciated!
 
Physics news on Phys.org
Sandra Tan said:
If every printer is busy then there is a job in the queue.

where B(p) = Printer p is busy and Q(j) = Print job j is queued.

When it's translated to symbol, we'll have (∀pB(p)) → (∃jQ(j)).

I'm trying to translate this statement to both English and symbol forms for Converse, Contrapositive and Negation.

Following is what i have got so far:
Converse
in words: If there is a job in the queue, then every printer is busy.
in symbol: (∃jQ(j)) → (∀pB(p))

Contrapositive
in words: If there is no job in the queue, then not every printer is busy.
in symbol: ¬(∃jQ(j)) → ¬(∀pB(p))

Negation
in words: Every printer is busy and there is no job in the queue.
in symbol: (not sure)

It's the symbol part that I'm not sure if they are correct or not. Any advice would be appreciated!
Hi Sandra,

The first two propositions are correct.

For the third one, the natural language is correct too. For the symbolic form, note that you already have (from the first two parts) the expression of the two parts of the statement:

Every printer is busy: $\forall p B(p)$
There is no job in the queue: $\neg(\exists j Q(J))$

and all you have to do is to connect these two proposition with AND ($\wedge$).
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top