MHB Convert V: 10< 90 Degrees + 66 - j10V at 10k Rads/s

  • Thread starter Thread starter csmith23
  • Start date Start date
  • Tags Tags
    Phasors Sinusoids
AI Thread Summary
The discussion revolves around converting the complex voltage expression V = 10<90 degrees + 66 - j(10 V) at an angular frequency of 10k rads/s. The initial confusion stems from the conversion of the complex number into a time-domain function. The correct simplification reveals that the imaginary components cancel out, leading to a final result of 66. The conclusion is that the voltage can be expressed as 66cos(10^4t). This highlights the importance of careful algebraic manipulation in complex number conversions.
csmith23
Messages
16
Reaction score
0
Question: Convert V = 10< 90 degrees + 66 - j(10 V) at angular frequency = 10k rads/s.

I am stuck here 10(cos(90)+ j(sin(90)) + 66 - j(10)

which would then be: 0 + j + 66 - j(10)
 
Mathematics news on Phys.org
Convert to what?

csmith23 said:
Question: Convert V

Do you have the original problem wording?
Convert to what?
1) V(t)=V(0)sin(wt+p) where t=time and V(0), w, p are real?
2) V(t)=V(0)Cos(wt+p) where t=time and V(0), w, p are real?
3) Other?
 
Last edited:
V(a)cos(\omegat+\phi)
 
csmith23 said:
V(a)cos(\omegat+\phi)
V(t)=V(0)cos($\omega$t+$\phi$)
You are very close,
what is the angle represented by j + 66 - j(10)? That is $\phi$.

Can you find $\omega$ from the given frequency?
Can you find V(0); it is the magnitude of j + 66 - j(10)?
 
Last edited:
actually I am already given \omega, that is what angular frequency is. Although just re reading my initial post, I can spot my problem. I made an algebraic error:

10(cos(90)+ j(sin(90)) + 66 - j(10)

corrected: 10(0) + j(10) + 66 - j(10)

which just simplifies to 66, while the imaginary cancel out

Final answer: 66cos(10^4t)​

Thanks for your help!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top