MHB Convert V: 10< 90 Degrees + 66 - j10V at 10k Rads/s

  • Thread starter Thread starter csmith23
  • Start date Start date
  • Tags Tags
    Phasors Sinusoids
Click For Summary
The discussion revolves around converting the complex voltage expression V = 10<90 degrees + 66 - j(10 V) at an angular frequency of 10k rads/s. The initial confusion stems from the conversion of the complex number into a time-domain function. The correct simplification reveals that the imaginary components cancel out, leading to a final result of 66. The conclusion is that the voltage can be expressed as 66cos(10^4t). This highlights the importance of careful algebraic manipulation in complex number conversions.
csmith23
Messages
16
Reaction score
0
Question: Convert V = 10< 90 degrees + 66 - j(10 V) at angular frequency = 10k rads/s.

I am stuck here 10(cos(90)+ j(sin(90)) + 66 - j(10)

which would then be: 0 + j + 66 - j(10)
 
Mathematics news on Phys.org
Convert to what?

csmith23 said:
Question: Convert V

Do you have the original problem wording?
Convert to what?
1) V(t)=V(0)sin(wt+p) where t=time and V(0), w, p are real?
2) V(t)=V(0)Cos(wt+p) where t=time and V(0), w, p are real?
3) Other?
 
Last edited:
V(a)cos(\omegat+\phi)
 
csmith23 said:
V(a)cos(\omegat+\phi)
V(t)=V(0)cos($\omega$t+$\phi$)
You are very close,
what is the angle represented by j + 66 - j(10)? That is $\phi$.

Can you find $\omega$ from the given frequency?
Can you find V(0); it is the magnitude of j + 66 - j(10)?
 
Last edited:
actually I am already given \omega, that is what angular frequency is. Although just re reading my initial post, I can spot my problem. I made an algebraic error:

10(cos(90)+ j(sin(90)) + 66 - j(10)

corrected: 10(0) + j(10) + 66 - j(10)

which just simplifies to 66, while the imaginary cancel out

Final answer: 66cos(10^4t)​

Thanks for your help!
 
Thread 'erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 29 ·
Replies
29
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
19
Views
3K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 13 ·
Replies
13
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K