1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Converting intrinsic equation to cartesian

  1. Feb 17, 2008 #1
    1. The problem statement, all variables and given/known data

    Intrinsic eqn of a curve is [itex] s = 12(sin \varphi)^{2}[/itex] where [itex]s[/itex] is length of arc from origin and [itex]\varphi[/itex] is angle of tangent at a point with x axis.

    Show the cartesian eqn is [itex](8-x)^{\frac{2}{3}}+y^{\frac{2}{3}}=4[/itex]

    2. Relevant equations^{}


    3. The attempt at a solution


    which comes out as:[tex] 3y^{\frac{2}{3}}=s[/tex]

    now doing the same process for x:




    which comes out as:[tex] s=12+3x^{\frac{2}{3}}[/tex]

    so now equating the two equations for s i get
    [tex] y^{\frac{2}{3}}-x^{\frac{2}{3}}=4[/tex]

    this obviously isnt right so where am i going wrong?!
    Last edited by a moderator: Feb 11, 2015
  2. jcsd
  3. Feb 11, 2015 #2
    Seven years too late of course - still worth answering i suppose: Im no expert but I looked through and nothing you appear to have done is wrong. It occurs to me that the two results (correct answer and our answer) are very similar, one is simply shifted to the left of the other. I think you have to remember the constants of integration.

    x infact equals -8(1 - s/12)^3/2 + c
    (c - x) = 8(1 - s/12)^3/2
    s = 12 - 3(c - x)^2/3
    Equating y and x:
    4 = (c - x)^2/3 + 3y^2/3(where c appears to be 8). It just so happens that the y constant of integration equals 0.

    One intrinsic equation can have more than 1 cartesian equivalent.
    Those are my thoughts at least - hope this helps.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted