A Converting this vector into polar form

Click For Summary
The discussion focuses on converting a vector representing the surface velocity of a spherical particle into polar form. The initial equation describes the surface velocity as a sum involving Legendre polynomials and a preferred swimming direction. Participants explore how to derive the tangential velocity expression as a function of the polar angle, emphasizing that the radial component of the velocity is zero due to the fixed coordinate system of the sphere. The conversion involves substituting the polar angle into the equations and simplifying using properties of the Legendre polynomials. The conversation concludes with a confirmation of the mathematical relationships leading to the final expression for tangential velocity.
Rodger125
Messages
3
Reaction score
0
TL;DR
I'd like to convert this surface velocity vector into the form I described. It might be just a matter of converting it into polar coords
In the following paper, the surface velocity for a moving, spherical particle is given as (eq 1):

$$\textbf{v}_s(\hat{\textbf{r}}) = \sum {2\over{{n(n+1)}}} B_n (\hat{\textbf{e}} \cdot \hat{\textbf{r}} \hat{\textbf{r}} - \hat{\textbf{e}}) P_n'( \hat{\textbf{e}} \cdot \hat{\textbf{r}})$$

where ##\hat{\textbf{r}}## is the preferred swimming axis (we consider that the sphere carries with it a fixed coordinate system that determines its preferred moving direction at each instant). ##\hat{\textbf{r}}## is a unit vector from the particle center to a point on the surface, we have the Legendre polynomials with $$P_n'$$ being the derivative of the n-th order Legendre polynomial, and $$B_n$$ is the amplitude of the corresponding mode.

They then (up to N=2) write the following expression for the surface tangential velocity, as a function of theta
$$\textbf{v}_s(\theta) = B_1 [sin(\theta) + {\alpha\over{2}} sin(2\theta)] \hat{\theta}$$
where $$\beta = B_2 / B_1$$.

How does one arrive at the second equation? Do you convert the first vector into polar coordinates? If so, how do you do this?

Thank you
 
Last edited by a moderator:
Mathematics news on Phys.org
I do not go into the mathematics but I am convinced that velocity of fluid at particle surface has no radial component. In fact
\mathbf{\hat{r}} \cdot \textbf{v}_s(\hat{\textbf{r}}) = \sum {2\over{{n(n+1)}}} B_n (\mathbf{\hat{r}}\cdot (\hat{\textbf{e}}\cdot \hat{\textbf{r}}) \hat{\textbf{r}} - \mathbf{\hat{r}}\cdot\hat{\textbf{e}}) P_n'( \hat{\textbf{e}} \cdot \hat{\textbf{r}}) =0
where
\mathbf{\hat{r}}\cdot \mathbf{\hat{r}}=1
 
Last edited:
anuttarasammyak said:
I do not go into the mathematics but I am convinced that velocity of fluid at particle surface has no radial component. In fact
\mathbf{\hat{r}} \cdot \textbf{v}_s(\hat{\textbf{r}}) = \sum {2\over{{n(n+1)}}} B_n (\mathbf{\hat{r}}\cdot (\hat{\textbf{e}}\cdot \hat{\textbf{r}}) \hat{\textbf{r}} - \mathbf{\hat{r}}\cdot\hat{\textbf{e}}) P_n'( \hat{\textbf{e}} \cdot \hat{\textbf{r}}) =0
where
\mathbf{\hat{r}}\cdot \mathbf{\hat{r}}=1
That would make sense, I think. If we have a coordinate system moving with the sphere, and the sphere does not change in radius, surely the radial velocity would be zero
 
Rodger125 said:
How does one arrive at the second equation? Do you convert the first vector into polar coordinates? If so, how do you do this?
The authors describe the polar angle as
$$
\hat r \cdot \hat e = \cos(\theta)
$$
Therefore taking the sum,
$$
\mathbf u^s (\hat r)=B_1(\cos(\theta)\hat r - \hat e)P_1^{'}(\cos(\theta))
$$
$$
+ \frac{1}{3} B_2(\cos(\theta)\hat r - \hat e)P_1^{'}(\cos(\theta))
$$
with
$$
P_1^{'}(\cos(\theta))=-\sin(\theta)
$$
$$
P_2^{'}(\cos(\theta))=-\frac{3}{2}\sin(2\theta)
$$
The sum becomes,
$$
-B_1(\cos(\theta)\hat r -\hat e)\sin(\theta) - \frac{1}{2} B_2(\cos(\theta)\hat r -\hat e)\sin(2\theta)
$$
The result follows if
$$
\cos(\theta)\hat r -\hat e=-\hat \theta
$$
 
Fred Wright said:
The authors describe the polar angle as
$$
\hat r \cdot \hat e = \cos(\theta)
$$
Therefore taking the sum,
$$
\mathbf u^s (\hat r)=B_1(\cos(\theta)\hat r - \hat e)P_1^{'}(\cos(\theta))
$$
$$
+ \frac{1}{3} B_2(\cos(\theta)\hat r - \hat e)P_1^{'}(\cos(\theta))
$$
with
$$
P_1^{'}(\cos(\theta))=-\sin(\theta)
$$
$$
P_2^{'}(\cos(\theta))=-\frac{3}{2}\sin(2\theta)
$$
The sum becomes,
$$
-B_1(\cos(\theta)\hat r -\hat e)\sin(\theta) - \frac{1}{2} B_2(\cos(\theta)\hat r -\hat e)\sin(2\theta)
$$
The result follows if
$$
\cos(\theta)\hat r -\hat e=-\hat \theta
$$
Thank you!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads