Coordinate Rotation in a Cartesian 3-Space

Click For Summary
The discussion focuses on deriving equations for a new Cartesian coordinate system after a rotation from the original system. The author transforms Cartesian coordinates into spherical coordinates and applies rotations defined by angles p0 and q0. However, the resulting equations for x' and y' still contain sine and cosine terms that depend on the original coordinates, complicating the goal of achieving a coordinate-independent set of equations. The author seeks advice on eliminating these terms or suggestions for simpler equations. The conversation highlights the limitations of using spherical coordinates for general rotations in three-dimensional space.
ForMyThunder
Messages
149
Reaction score
0
I have been trying to derive a set of equations for a new Cartesian coordinate system after a rotation of an original coordinate system. This is what I did:

1) I transformed the Cartesian coordinates (x,y,z) into spherical coordinates (r,p,q):
x= r cos(q) cos(p)
y= r cos(q) sin(p)
z= r sin (q)

2) The coordinates are to be rotated by angles of p0 and q0 so that:

p'= p-p0
q'= q-q0
r'= r

3) Substitution:

x'= r cos(q-q0) cos (p-p0)
y'= r cos(q-q0) sin (p-p0)
z'= r sin(q-q0)

4) Simplifying and substituting the original values of x, y, and z:

x'= (r cos(q) cos(q0) + r sin(q) sin(q0)) (cos(p) cos(p0) + sin(p) sin(p0))
= r cos(q) cos(q0) cos(p) cos(p0) + r cos(q) cos(q0) sin(p) sin(p0) + r sin(q) sin(q0)cos(p) cos(p0) + r sin(q) sin(q0) sin(p) sin(p0)
= x cos(q0) cos(p0) + y cos(q0) sin(p0) + z sin(p0)cos(p) cos(p0) + z sin(q0) sin(p)
sin(p0)

y'=(r cos(q) cos(q0) + r sin(q) sin(q0)) (sin(p) cos(p0) - cos(p) sin(p0))
=r cos(q) cos(q0) sin(p) cos(p0) - r cos(q) cos(q0) cos(p) sin(p0) + r sin(q) sin(q0)
sin(p) cos(p0) - r sin(q) sin(q0) cos(p) sin(p0)
=y cos(q0) cos(p0) - x cos(q0) sin(p0) + z sin(q0) sin(p) cos(p0) - z sin(q0) cos(p)
sin(p0)

z'= r sin(q) cos(q0) - r cos(q) sin(q0)
= z cos(q0) - r cos(q) sin(q0)

This is as far as I got, but in the equations for x and y, there are still some sin(p)'s and
cos(p)'s left in there which cannot be evaluated without the original coordinates and I want to find a coordinate-independent set of equations so that the same equations can be used for every point in the original coordinate system.

My question is: Is there any way to get rid of these sine's and cosine's? Or do you see anything that I could have done wrong or different?

If you know any simpler equations, please send them to me.

Thanks.
 
Physics news on Phys.org
The spherical coordinates are useful only for the rotation around z-axis. With your notation, that means translation of variable p. For more general rotations, the spherical coordinates are making things only more difficult.

Here's something about rotations in three dimensions: Elements of SO(3)?
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 9 ·
Replies
9
Views
973
Replies
16
Views
3K
  • · Replies 8 ·
Replies
8
Views
839
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K