- #1
Beelzedad
- 24
- 3
Consider a continuous charge distribution in volume ##V'##. Draw a closed surface ##S## inside the volume ##V'##.
___________________________________________________________________________
Consider the following multiple integral:
##\displaystyle B= \iint_S \Biggl( \iiint_{V'} \left[ \dfrac{\cos(\hat{R},\hat{n})}{R^2} \rho'\ \right] dV' \Biggl) dS \tag1##
where
##R=|\mathbf{r}-\mathbf{r'}|##
##\mathbf{r'}=(x',y',z')## is coordinates of source points
##\mathbf{r}=(x,y,z)## is coordinates of field points
##\cos(\hat{R},\hat{n})## is the angle between ##R## and normal to surface element
##\rho'## is the charge density and is continuous throughout the volume ##V'##
__________________________________________________________________________
When ##\mathbf{r} \in S##, the function is not integrable in domain ##V'##. So we use change of variables:
##\displaystyle B= \iint_S \Biggl( \iiint_{V'} \left[ \dfrac{\cos(\hat{R},\hat{n})}{R^2} \rho'\ {r'}^2 \sin \theta' \right] d\theta' d\phi' dr' \Biggr) dS \tag2##
Note that in this equation, ##\theta'## and ##\phi'## are w.r.t point ##\mathbf{r} \in S ##
__________________________________________________________________________
Now by changing the order of integration:
##\displaystyle B = \iiint_{V'} \Biggl( \iint_S \left[ \dfrac{\cos(\hat{R},\hat{n})}{R^2} \rho'\ {r'}^2 \sin \theta' \right] dS \Biggr) d\theta' d\phi' dr' \tag3##
##\displaystyle B= \iiint_{V'} \Biggl( \iint_S \left[ \dfrac{\cos(\hat{R},\hat{n})}{R^2} \right] dS \Biggr) \rho'\ {r'}^2 \sin \theta' d\theta' d\phi' dr' \tag4##
Now here is my question:
Here in this last equation, ##\theta'## and ##\phi'## are w.r.t. which point?
[1]: https://i.stack.imgur.com/mz1VV.png
___________________________________________________________________________
Consider the following multiple integral:
##\displaystyle B= \iint_S \Biggl( \iiint_{V'} \left[ \dfrac{\cos(\hat{R},\hat{n})}{R^2} \rho'\ \right] dV' \Biggl) dS \tag1##
where
##R=|\mathbf{r}-\mathbf{r'}|##
##\mathbf{r'}=(x',y',z')## is coordinates of source points
##\mathbf{r}=(x,y,z)## is coordinates of field points
##\cos(\hat{R},\hat{n})## is the angle between ##R## and normal to surface element
##\rho'## is the charge density and is continuous throughout the volume ##V'##
__________________________________________________________________________
When ##\mathbf{r} \in S##, the function is not integrable in domain ##V'##. So we use change of variables:
##\displaystyle B= \iint_S \Biggl( \iiint_{V'} \left[ \dfrac{\cos(\hat{R},\hat{n})}{R^2} \rho'\ {r'}^2 \sin \theta' \right] d\theta' d\phi' dr' \Biggr) dS \tag2##
Note that in this equation, ##\theta'## and ##\phi'## are w.r.t point ##\mathbf{r} \in S ##
__________________________________________________________________________
Now by changing the order of integration:
##\displaystyle B = \iiint_{V'} \Biggl( \iint_S \left[ \dfrac{\cos(\hat{R},\hat{n})}{R^2} \rho'\ {r'}^2 \sin \theta' \right] dS \Biggr) d\theta' d\phi' dr' \tag3##
##\displaystyle B= \iiint_{V'} \Biggl( \iint_S \left[ \dfrac{\cos(\hat{R},\hat{n})}{R^2} \right] dS \Biggr) \rho'\ {r'}^2 \sin \theta' d\theta' d\phi' dr' \tag4##
Now here is my question:
Here in this last equation, ##\theta'## and ##\phi'## are w.r.t. which point?
[1]: https://i.stack.imgur.com/mz1VV.png
Last edited: