anorlunda said:
This article is from the 70s, so it may be dated, but it is a wonderful description of the time evolution by Hans Bethe and Gerald Brown.
http://www.cenbg.in2p3.fr/heberge/EcoleJoliotCurie/coursannee/transparents/SN%20-%20Bethe%20e%20Brown.pdf
A couple of interesting points from that article.
- The time to maximum density in the collapse is not several seconds, it is on the order of 5 ms.
- Densities are so great that the infalling materials are opaque to neutrinos. Even thermonuclear explosions do not duplicate that condition.
The article you're referencing is referring to the time for the core to collapse to neutron star densities, NOT the time for the rest of the stellar envelope to freefall onto the newly formed neutron star. That timescale, for a neutron star of 1.5 solar masses and a distance to the envelope of 400,000 km. is given by the formula t=(d^3/(2GM))^1/2 ignoring general relativistic effects, turns out to be about 400 sec.
While the infalling nuclear material is opaque to neutrinos, all computational simulations thus far have failed to produce an explosion due to neutrino pressure. Thermonuclear explosions don't need to resort to that condition in order to produce an explosion; nikkkom's whole point is that if a thermonuclear explosion can be achieved at temperatures of millions of degrees due to gamma ray heating and photon pressure, why aren't temperatures of billions of degrees relevant for supernova explosions?
Computer simulations that model the formation of the neutron star from the stellar core occur at timescales of nanoseconds, any modelling of the physics in the stellar envelope would occur on a hydrodynamic timescale of milliseconds. Thus for anyone timestep of the envelope, a thousand timesteps of the core would have to be calculated. For a fully three dimensional model that would be increased to a billion, not to mention the increased spatial resolution...
So out of the many papers modeling the supernova problem, I've only found two that look at the physics in the stellar envelope;
One, by Stirling Colgate, that found that energies from neutrinos produced a high pressure, low density region in the envelope that might be susceptible to Rayleigh-Taylor overturn instability producing an outward flow, and
Second, a paper by Stan Woosley which found that a combination of angular momentum conservation and nuclear reactions in the oxygen layer produced an outward motion. This study was done in the early eighties and I thought it was an extremely promising avenue for further investigation, and I thought that with the increase in computing power coming, that he would pursue it further, but for some reason he never did...