Consider the transformation from Poincare-AdS##_3## geometry to global AdS##_3## geometry:(adsbygoogle = window.adsbygoogle || []).push({});

$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2}g_{\alpha\beta}dx^{\alpha}dx^{\beta}, \qquad \text{Poincare-AdS$_3$}$$

$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2}\left(-dt^{2}+r^{2}d\phi^{2}\right), \qquad \text{Poincare-AdS$_3$}$$

$$ds^{2} = - r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + r^{4}d\phi^{2}, \qquad \text{Poincare-AdS$_3$}$$

$$ds^{2} = -\cosh^{2}\rho\ d\tau^{2} + d\rho^{2} + \sinh^{2}\rho\ d\varphi^{2}, \qquad \text{global AdS$_3$}$$

where the transformation of coordinates is as follows:

$$\rho = \ln r, \qquad \tau = \left(\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}\right)t, \qquad \varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi.$$

------------------------------------------------

The transformation ##\rho = \ln r## simply rescales the radial distance ##r## by the logarithmic function.

The transformation with ##\displaystyle{\tau = \left(\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}\right)t}## rescales the time ##t## by the factor ##\displaystyle{\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}}##. For example, at ##\rho = 0##, we have ##\tau = t##, and at ##\rho = \infty##, we have ##\tau = 2t##.

The transformation with ##\displaystyle{\varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi}## rescales the angle ##\phi## by the factor ##\displaystyle{\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}}##.For example, at ##\rho = 0##, we have ##\varphi = \infty##, and at ##\rho = \infty##, we have ##\varphi = \infty##.

-------------------------

Have I made a mistake in my interpretation of the transformation ##\displaystyle{\varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi}##?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Correct coordinate transformation from Poincare-AdS##_3## to global AdS##_3##

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**