MHB Cos Trig Identity: Deriving Formula for Circuits Analysis

AI Thread Summary
The discussion focuses on deriving a cosine trigonometric identity for the expression cos(A+B)cos(A+C) relevant to circuit analysis. It is noted that this expression can be transformed into a sum using the identity cos(A+B)cos(A+C) = 1/2 [cos(2A + B + C) + cos(B-C)]. This transformation is crucial for simplifying calculations in circuit analysis. Participants seek clarification on the derivation process and its applications. Understanding this identity can enhance problem-solving in electrical engineering contexts.
paulmdrdo1
Messages
382
Reaction score
0
Hello. Do you guys know if there is an identity related to this expression

$$\cos(A+B)\cos(A+C)$$

If so, can you help me how to derive it? I need it for the derivation of the formula from my circuits analysis course. Thanks.
 
Mathematics news on Phys.org
Apparently, you can change it from a product to a sum like this:
$$\cos(A+B) \, \cos(A+C) = \frac12 \left[ \cos(2A + B + C) + \cos(B-C) \right].$$
Does that help?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top