B Cosmic expansion and shock waves

  • B
  • Thread starter Thread starter Adel Makram
  • Start date Start date
  • Tags Tags
    Cosmic expansion
Adel Makram
Messages
632
Reaction score
15
TL;DR Summary
Do galaxies that have surpassed the speed of light during the cosmic inflation process emit radiation waves comparable to the sonic boom when an aeroplane breaches the sound barrier?
Do galaxies that have surpassed the speed of light during the cosmic expansion emit radiation waves comparable to the sonic boom when an aeroplane breaches the sound barrier?
 
Physics news on Phys.org
Adel Makram said:
TL;DR Summary: Do galaxies that have surpassed the speed of light during the cosmic inflation process emit radiation waves comparable to the sonic boom when an aeroplane breaches the sound barrier?
No. When space expands, there is no sense in which a galaxy has absolute motion. Locally, stars will emit light independent of the expansion of space. There's nothing happening locally to affect the emission of light.

Note that cosmic inflation took place in the very early universe when there were no stars of galaxies.
 
"Speed" is a slightly more slippery concept in curved spacetime than flat spacetime, and those galaxies aren't moving faster than light in the relevant sense.

Particles that exceed the speed of light in a medium emit Cerenkov radiation as they slow down.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top