- 24,753
- 795
Hi Jorrie, I just saw your edit. I think you are right that the curve physically stops at 16.3 where the time for the signal to reach target goes to infinity. If it takes an infinite time for a our signal to reach a galaxy at 16.3 Gly that clearly says it is the limit. I like the clarity.
Can't think of any physical meaning of negative stretch, or negative scale factor.
To me it looks like the calculator does what it has to do, what it should do. reach the axis (where time=) exactly at the right place. It's a really satisfying gadget, you must be be having some proud papa moments these days.
(Or so it seems to me---as a non-expert interested in the subject.)
btw I like the "down-step" feature! It let's me get the size table I want without having to calculate what the step size should be to achieve that. And when I change the upper and lower limits of the table, it stays the desired size. Good (though unconventional) use of the minus sign
EDIT: Hi Jorrie, just saw your next post which wakes me up to the fact that I should have been saying 15.6 here instead of 16.3. The y-intercept of the D_now curve should give the present value of the cosmic event horizon (which is around 15.6 Gly) not the future value.
Jorrie said:Here are nice graphs of most of those columns:
![]()
Edit:
The "y-intercept" of the green curve is in fact just an artefact of this thread's definition of D_now for the future: the (negative) distance to an observer that will receive our present signals with a stretch 1/S, i.e. with redshift 1/S + 1. The y-intercept represents the cosmic even horizon (16.3 Gy), where redshift (and time to reach) tends to infinity. Negative S does not have a physical meaning, or does it? One can mathematically extend the curve to the negative domain, but I have no idea what it may mean.
Last edited: