Could Graphene Become the Next Silicon?

  • Context: Undergrad 
  • Thread starter Thread starter sanman
  • Start date Start date
  • Tags Tags
    Graphene Silicon
Click For Summary
SUMMARY

Graphene, a highly-conductive material, exhibits semiconductive properties at narrow dimensions, particularly in graphene nano-ribbons (GNRs). Research indicates that GNRs can form multiple-quantum-well structures, enhancing electronic phenomena such as resonant tunneling and spin valve effects. Despite graphene's superior carrier mobility, current devices underperform compared to silicon, highlighting the need for optimization. Advances in production methods, such as using alkaline solutions, may facilitate the creation of large graphene wafers for applications in microprocessors and solar panels.

PREREQUISITES
  • Understanding of graphene and its properties
  • Familiarity with semiconductor physics
  • Knowledge of quantum mechanics related to electronic materials
  • Awareness of current semiconductor technologies, particularly silicon
NEXT STEPS
  • Research the production techniques for graphene, particularly using alkaline solutions
  • Explore the properties and applications of graphene nano-ribbons (GNRs)
  • Investigate the implications of strained graphene on electrical conductivity
  • Learn about the potential of graphene in optical display technologies
USEFUL FOR

Researchers, materials scientists, and engineers interested in the future of semiconductor technology, particularly those exploring alternatives to silicon and applications of graphene in electronics and optics.

  • #91
Yes, graphene will probably show up in interconnects before showing up on chips themselves.

The first graphene transistors will be for RF communication.

Then we'll gradually see it showing up in other micro-electronics.
 
Physics news on Phys.org
  • #92
IBM Research has demonstrated an optical link using a graphene photodetector

http://www.eetimes.com/news/latest/...J0MHSBQE1GHPCKH4ATMY32JVN?articleID=224200681

EETimes said:
To achieve the world's first optical data link using graphene, IBM fabricated an asymetrical metal-graphene-metal FET that used palladium and titanium as the source and drain electrodes, respectively, and graphene as the channel. Photons hitting the graphene create electron-hole pairs which would ordinarily recombine in the absence of a strong electric field, but are prevented from doing so by the interdigitated source and drain which intensifies the built-in potential profile of the different metals within the channel.


Regards, Hans
 
  • #94
sanman said:
Could graphene achieve superconductivity?

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.104.136803

Room temperature superconductivity? @ STP conditions?

Now that would truly be amazing!

I don't believe it can, without materials or other science beyond current abilities. Then again, maybe they found some amazing material to dope it with (they mention that in the abstract) and they can make the leap to manfucaturing? The idea of doped carbon as a room temp superconductor that could be reasonably manufactured would be a true leap forward, and one I never expected to see in my lifetime.

That said, Hans' post about a Graphene photodetector almost had me weeping for joy. The more uses that this material can be purposed for, and the easier it is to manufacture, the sooner we'll have it in our computers.

I still think interconnects first as you said sanman... maybe optical links? It might not be a superconductor, but I'd take it! Besides, I'm tired of the occasional computer frying and then getting a whiff of Silane gas... which is truly wretched stuff. :smile:
 
  • #95
Quasi freestanding two-dimensional conductor with massless charge carriers

Quasi freestanding two-dimensional conductor with massless charge carriers:

http://www.physorg.com/wire-news/38...imensional-conductor-with-massless-charg.html

translation: there's gold in that graphene!

intercalation of gold atoms between graphene and substrate increases distance between them, to promote electronic decoupling and thus approach the idealized qualities of individual freestanding graphene sheets
 
Last edited:
  • #98
New Graphene Fabrication Method Uses Silicon Carbide Template

The new technique has been used to fabricate an array of 10,000
top-gated graphene transistors

http://www.gatech.edu/newsroom/release.html?nid=61435

hgImage.php?nid=61436&f=medium.jpg



Regards, Hans
 
  • #99
IBM demos 155 GHz Graphene transistor with a 40 nm gate length

graphonic.jpg


http://physicsworld.com/cws/article/news/45649

Some links to previous work of the group:

Feb 5, 2010: 100 GHz with 240nm gate length.
http://physicsworld.com/cws/article/news/41643

Jan 5, 2009: 26 GHz with 150nm gate length.
http://physicsworld.com/cws/article/news/37204


Regards, Hans
 
  • #100
I.B.M. Researchers Create High-Speed Graphene Circuits
http://www.nytimes.com/2011/06/10/technology/10chip.html
. . . In the Science paper, the I.B.M. researchers describe a demonstration in which they deposited several layers of graphene on a silicon wafer, then created circuits based on graphene transistors and components known as inductors. They demonstrated frequency mixing up to speeds of 10 gigahertz.

In the past I.B.M. has created stand-alone graphene transistors, but not complete electronic circuits.
. . . .
Same story at PhysicsWorld
http://physicsworld.com/cws/article/news/46237
 
Last edited:

Similar threads

  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 25 ·
Replies
25
Views
5K
  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
7K