Yes, definitely good question. To understand the process of covalent bonding, you will first need to understand a few basic factoids...
1. Covalent bonding occurs between electrons in the valence shell (outer most electron energy level) of an element because of the inherent tendency of an unstable electronic system (unpaired electrons) to form a more stable electronic system (paired electrons).
2. A single covalent bond is, at it's simplest configuration, an electron pair.
3. The driving force for covalent bonding (again, at it's most fundamental level) is the pairing of an unstable system of unpaired electrons at the valence level of elements having the capacity to form an energetically more favorable pairing of electrons to form covalent bonds. However, in some cases, pairing of electrons occur forming a 'non-bonded electron pair' to fill an octet valence requirement.
4. An electron - as an individual entity - is a concentrated spinning mass having a negative charge. A spinning charged particle will have a dipole character; i.e., a weak negative end and weak positive end. The term used to describe an unpaired electron is 'Paramagnetic' and a paired set of electrons is 'Diamagnetic'.
Now, two Hydrogen atoms in close proximity will have a tendency to bond by covalent electron pairing of valence electrons because the dipole character of the two electrons will form a more energetically favorable configuration than if the electrons remained unpaired. As two electrons approach, one electron will 'flip' to give a +/- dipole that aligns with the -/+ dipole of another electron creating a stabilized electron pair. A commonly used image of this is as follows...
The 'North Pole - South Pole' attraction forms an electron pairing that is more energetically stable than for unpaired electrons. Such is the most fundamental driving force in all of covalent bonding. Beyond this, the nature of electron-electron interaction is described in many good texts on Quantum Mechanics and gives a more comprehensive overview of the behavior of electrons before and after forming the covalent bond consisting of 'Diamagnetic' paired electrons.