After a lot of battling with equations and a few mountain dews later.. I've arrived at a solution.. which i believe is quite correct. So.. i request you to please take a look and point out flaws [if any]:
Assumptions for this problem: Take for any arbitrary distance 'r' from the center, let the center be the origin.
Also, instead of taking the starting position as 10R_E, I'm assuming an arbitrary position 's'.
The acceleration of the object is given by:
<br />
a = -\frac{GM}{r^2}<br />
<br />
\frac{dv}{dt} = -\frac{GM}{r^2}<br />
<br />
\frac{dv}{dr} \frac{dr}{dt} = -\frac{GM}{r^2}<br />
<br />
vdv = -\frac{GM}{r^2}dr<br />
<br />
\frac{v^2}{2} = \frac{GM}{r} + C<br />
also, at r = s, v = 0 Hence,
<br />
GM + sC = 0<br />
<br />
C = -\frac{GM}{s}<br />
So, we have:
<br />
v = \sqrt{2GM} \sqrt{\frac{1}{r} - \frac{1}{s}}<br />
Let, us just take out the \sqrt{2GM} = \Phi. We'll call it the 'planetary mass factor' [yup.. it's my turn now to use fancy terms :P], So, we have the 'planetary mass factor' as:
<br />
\Phi = \sqrt{2GM}<br />
so..
<br />
\frac{dr}{dt} = \Phi \sqrt{\frac{1}{r} - \frac{1}{s}}<br />
let the above equation be eqn. 1.
<br />
\sqrt{\frac{sr}{s - r}}dr = \Phi dt<br />
Let,
<br />
\frac{sr}{s - r} = x<br />
<br />
\frac{s^2}{(s - r)^2}dr = dx<br />
Putting the values in eqn. 1, we get:
<br />
\frac{(s - r)^\frac{3}{2}}{s^2}dx = \Phi dt<br />
Also, from the first assumption,
<br />
r = \frac{sx}{s + x}<br />
So,
<br />
\frac{dx}{s + x} = \Phi dt<br />
<br />
log_e|s + x| = \Phi t + J<br />
J is again, a constant of integration. Now, substituting the value of 'x' in terms of r, we get:
<br />
\frac{s^2}{s - r} = e^{\Phi t + J}<br />
<br />
\frac{s^2}{s - r} = e^J e^{\Phi t}<br />
<br />
\frac{s^2}{s - r} = ke^{\Phi t}<br />
On simplifying it a bit,
<br />
r(t) = s\left(1 - \frac{s}{ke^{\Phi t}}\right)<br />
Now, r(0) = s . Solving for 'k',
<br />
k = 2s<br />
Putting it in the equation, we get the answer as:
<br />
r(t) = s\left(1 - \frac{1}{2e^{\Phi t}}\right) = s\left(1 - \frac{1}{2e^{\sqrt{2GM} t}}\right)<br />
This is the equation of motion I got. :D