Undergrad Darboux theorem for symplectic manifold

Click For Summary
The discussion centers on the application of Darboux's theorem to symplectic manifolds, specifically regarding the properties of the symplectic 2-form and its associated 1-form. It clarifies that the wedge product ##\theta \wedge (d\theta)^m## results in a null form due to dimensional constraints, as it produces a ##2m + 1## form on a ##2m## dimensional manifold. Participants also explore the implications of the rank of the 2-form ##d\theta##, concluding that it must be non-zero for rank ##m=n/2## and that higher powers vanish. The conversation emphasizes the relationship between the rank of forms and their dimensions in the context of symplectic geometry. Understanding these properties is crucial for applying Darboux's theorem effectively.
cianfa72
Messages
2,906
Reaction score
306
TL;DR
Application of Darboux theorem to symplectic manifold
Hi,

I am missing the point about the application of Darboux theorem to symplectic manifold case as explained here Darboux Theorem.

We start from a symplectic manifold of even dimension ##n=2m## with a symplectic differential 2-form ##w## defined on it. Since by definition the symplectic 2-form is closed (##d\omega=0##) then from Poincaré lemma there exist locally a 1-form ##\theta## such that ##\omega=d\theta##.

The point I'm missing is why ##\theta \wedge (d\theta)^m## is identically the null form.

Thank you.

p.s. ##(d\theta)^m## should be ##d\theta \wedge d\theta \wedge d\theta \wedge ...## ##m## times
 
Last edited:
Physics news on Phys.org
It will be a ##2m+1## form on a ##2m## dimensional manifold.
 
martinbn said:
It will be a ##2m+1## form on a ##2m## dimensional manifold.
If I understand correctly, you mean ##(d\theta)^m## is actually a ##2m## form just because it is the wedge product of ##m## 2-forms. Then ##\theta \wedge (d\theta)^m## is a ##2m +1## form on an ##2m## dimensional manifold hence it vanishes.

By the way...when we say it vanishes we actually mean it is the null form, right ?
 
Last edited:
Another point related to the above.

Take the ##\Lambda^{m} V^*## vector space where the dimension of the underlying dual space ##V^*## is ##n##. That means the rank ##r## of a generic ##m##-form is ##r \leq dim \Lambda^{m} V^* = \begin{pmatrix} n \\ m \end {pmatrix}##.

In Darboux theorem's hypothesis the ##2##-form ##d\theta## is assumed to be with constant rank ##m=n/2##.
Does it actually mean ##(d\theta)^m \neq 0 ## and ##(d\theta)^{m+1} = 0## ?
 
Last edited:
cianfa72 said:
Another point related to the above.

Take the ##\Lambda^{m} V^*## vector space where the dimension of the underlying dual space ##V^*## is ##n##. That means the rank ##r## of a generic ##m##-form is ##r \leq dim \Lambda^{m} V^* = \begin{pmatrix} n \\ m \end {pmatrix}##.

In Darboux theorem's hypothesis the ##2##-form ##d\theta## is assumed to be with constant rank ##m=n/2##.
Does it actually mean ##(d\theta)^m \neq 0 ## and of course ##(d\theta)^{m+1} = 0## ?
Yes, that's way I understood it, that is how the rank is defined. It is the largerst ##l## such that ##\omega^l\not = 0##.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 73 ·
3
Replies
73
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K