tiny-tim
Science Advisor
Homework Helper
- 25,837
- 258
hi byron178! 
some people have a strange idea of the meaning of "exist"
here's a more psychological reason from Hrvoje Nikolic, at page 33 of "Quantum mechanics: Myths and facts" (51 pages, 2007, at http://arxiv.org/abs/quant-ph/0609163" ) …
byron178 said:How come some say that virtual particles exist and some say they don't exist?
some people have a strange idea of the meaning of "exist"
here's a more psychological reason from Hrvoje Nikolic, at page 33 of "Quantum mechanics: Myths and facts" (51 pages, 2007, at http://arxiv.org/abs/quant-ph/0609163" ) …
9.3 Virtual particles?
The calculational tool represented by Feynman diagrams suggests an often abused picture according to which “real particles interact by exchanging virtual particles”. Many physicists, especially nonexperts, take this picture literally, as something that really and objectively happens in nature. In fact, I have never seen a popular text on particle physics in which this picture was not presented as something that really happens. Therefore, this picture of quantum interactions as processes in which virtual particles exchange is one of the most abused myths, not only in quantum physics, but in physics in general. Indeed, there is a consensus among experts for foundations of QFT that such a picture should not be taken literally. The fundamental principles of quantum theory do not even contain a notion of a “virtual” state. The notion of a “virtual particle” originates only from a specific mathematical method of calculation, called perturbative expansion. In fact, perturbative expansion represented by Feynman diagrams can be introduced even in classical physics [52, 53], but nobody attempts to verbalize these classical Feynman diagrams in terms of classical “virtual” processes.
So why such a verbalization is tolerated in quantum physics? The main reason is the fact that the standard interpretation of quantum theory does not offer a clear “canonical” ontological picture of the actual processes in nature, but only provides the probabilities for the final results of measurement outcomes.
In the absence of such a “canonical” picture, physicists take the liberty to introduce various auxiliary intuitive pictures that sometimes help them think about otherwise abstract quantum formalism. Such auxiliary pictures, by themselves, are not a sin. However, a potential problem occurs when one forgets why such a picture has been introduced in the first place and starts to think on it too literally.
The calculational tool represented by Feynman diagrams suggests an often abused picture according to which “real particles interact by exchanging virtual particles”. Many physicists, especially nonexperts, take this picture literally, as something that really and objectively happens in nature. In fact, I have never seen a popular text on particle physics in which this picture was not presented as something that really happens. Therefore, this picture of quantum interactions as processes in which virtual particles exchange is one of the most abused myths, not only in quantum physics, but in physics in general. Indeed, there is a consensus among experts for foundations of QFT that such a picture should not be taken literally. The fundamental principles of quantum theory do not even contain a notion of a “virtual” state. The notion of a “virtual particle” originates only from a specific mathematical method of calculation, called perturbative expansion. In fact, perturbative expansion represented by Feynman diagrams can be introduced even in classical physics [52, 53], but nobody attempts to verbalize these classical Feynman diagrams in terms of classical “virtual” processes.
So why such a verbalization is tolerated in quantum physics? The main reason is the fact that the standard interpretation of quantum theory does not offer a clear “canonical” ontological picture of the actual processes in nature, but only provides the probabilities for the final results of measurement outcomes.
In the absence of such a “canonical” picture, physicists take the liberty to introduce various auxiliary intuitive pictures that sometimes help them think about otherwise abstract quantum formalism. Such auxiliary pictures, by themselves, are not a sin. However, a potential problem occurs when one forgets why such a picture has been introduced in the first place and starts to think on it too literally.
Last edited by a moderator:
…