MHB Decide h so that the linear system has infinite solutions

Click For Summary
To determine the value of \( h \) for which the linear system \( Ax = b \) has infinite solutions, the augmented matrix must be row reduced. The process shows that when \( h = 72 \), the last row becomes all zeroes, indicating infinite solutions. Conversely, if \( h \neq 72 \), the last row leads to a contradiction, resulting in no solutions. Thus, the only value for \( h \) that allows for infinite solutions is 72. This conclusion is essential for solving the linear system effectively.
mpdancow
Messages
1
Reaction score
0
Hi! I'm need some help with this question:

Decide $h$ so that the linear system $Ax=b$ has infinite solutions.

$$A=\pmatrix{
5 & 6 & 7 \cr
-7 & -4 & 1 \cr
-4 & 4 & 16 \cr}$$

$$b=\pmatrix{
6 \cr
30 \cr
h \cr}$$

I solved a similar question before but with A being a 2x2 matrix (and B a 2x1) and the equations multiples of each other, so it was easier. I don't even know how to start with this one. Any help I can get is appreciated!
 
Physics news on Phys.org
You've to put it in the augmented matrix form then row reduce it (not to echelon form necessarily).

$\begin{aligned} \begin{pmatrix}\begin{array}{rrr|r}
5&6&7&6 \\
-7 & -4 & 1 & 30 \\
-4 & 4 &16 &h
\end{array}\end{pmatrix} & \xrightarrow{R_1 \to R_1+R_2}\begin{pmatrix}\begin{array}{rrr|r}
-2&2&8&36 \\
-7 & -4 & 1 & 30 \\
-4 & 4 &16 &h
\end{array}\end{pmatrix} \xrightarrow{R_3 \to R_3-2R_1}\begin{pmatrix}\begin{array}{rrr|r}
-2&2&8&36 \\
-7 & -4 & 1 & 30 \\
0 & 0 &0 &h -72
\end{array}\end{pmatrix}\end{aligned}$

If $h = 72$ we have the last row of all zeroes, therefore the system has infinite number of solutions.

On the other hand for $h \ne 72$ we can divide the last row by $h-72$ to get $0=1$ (so no solutions).
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
891
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K