Decide if the sets are subspaces or affine subspaces

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Sets Subspaces
Click For Summary
SUMMARY

The discussion evaluates four subsets of a vector space to determine if they are subspaces or affine subspaces. The subsets analyzed are: \( V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mid x_1 = 0 \right\} \), which is confirmed as a subspace; \( W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mid x_2 = 2 \right\} \), which is identified as an affine subspace; \( S = \left\{ \lambda \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \mid \lambda \in \mathbb{R} \right\} \), confirmed as a subspace; and \( T = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \mid \lambda \in \mathbb{R} \right\} \), which is also an affine subspace. The discussion concludes that a subset can be either a subspace or an affine subspace, but not both.

PREREQUISITES
  • Understanding of vector spaces and their properties
  • Familiarity with the definitions of subspaces and affine subspaces
  • Knowledge of linear combinations and scalar multiplication in vector spaces
  • Basic proficiency in mathematical notation and set theory
NEXT STEPS
  • Study the properties of vector spaces in linear algebra
  • Learn about the criteria for identifying subspaces
  • Explore examples of affine subspaces and their characteristics
  • Investigate the implications of adding vectors to subspaces and affine subspaces
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, vector spaces, and their applications in various fields such as physics and engineering.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the subsets \begin{equation*}V:=\left \{\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix}\mid x_1=0\right \}, \ \ \ W:=\left \{\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix}\mid x_2=2\right \}, \ \ \ S:=\left \{\lambda \begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\mid \lambda \in \mathbb{R}\right \}, \\ T:=\left \{\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}+\lambda\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\mid \lambda \in \mathbb{R}\right \}\end{equation*}

I want to check which are subspaces and which are affine subspaces.

I have done the following:

  • We consider the subset $V$.
    1. It holds that $V\neq \emptyset$, since for example $\begin{pmatrix}0 \\ 0 \\ 0\end{pmatrix}$ is in $V$.
    2. We consider two elements of $V$, $v_1=\begin{pmatrix}0 \\ x_2 \\ x_3\end{pmatrix}$, $v_2=\begin{pmatrix}0 \\ \tilde{x}_2 \\ \tilde{x}_3\end{pmatrix}$. Then the sum is $v_1+v_2=\begin{pmatrix}0 \\ x_2+\tilde{x}_2 \\ x_3+\tilde{x}_3\end{pmatrix}\in V$.
    3. Let $v=\begin{pmatrix}0 \\ x_2 \\ x_3\end{pmatrix}\in V$ and $\alpha\in \mathbb{R}$. Then $\alpha\cdot v=\begin{pmatrix}0 \\ \alpha x_2 \\ \alpha x_3\end{pmatrix}\in V$.
    That means that $V$ is a subspace.

    $$$$
  • We consider the subset $W$.
    1. It holds that $W\neq \emptyset$, since for example $\begin{pmatrix}0 \\ 2 \\ 0\end{pmatrix}\in W$.
    2. Let $w_1=\begin{pmatrix}x_1 \\ 2 \\ x_3\end{pmatrix}, w_2=\begin{pmatrix}\tilde{x}_1 \\ 2 \\ \tilde{x}_3\end{pmatrix}\in W$. Then $w_1+w_2=\begin{pmatrix}x_1+\tilde{x}_1 \\ 4 \\ x_3+\tilde{x}_3\end{pmatrix}\notin W$.
    So $W$ is not a subspace.

    We can write this subset in the form:
    \begin{equation*}W:=\left \{\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix}\mid x_2=2\right \}=\left \{\begin{pmatrix}x_1 \\ 2 \\ x_3\end{pmatrix}\right \}=\left \{\begin{pmatrix}0 \\ 2 \\ 0\end{pmatrix}+\begin{pmatrix}x_1 \\ 0 \\ x_3\end{pmatrix}\right \}\end{equation*}

    We show that the set $\tilde{W}=\left \{\begin{pmatrix}x_1 \\ 0 \\ x_3\end{pmatrix}\right \}$ is s subspace, and then $W=\left \{\begin{pmatrix}0 \\ 2 \\ 0\end{pmatrix}+\tilde{w}\mid \tilde{w}\in \tilde{W}\right \} $ is an affine subspace.
    1. It holds that $\tilde{W}\neq \emptyset$, since for example the vector $\begin{pmatrix}0 \\ 0 \\ 0\end{pmatrix}$ is contained.
    2. Let $\tilde{w}_1=\begin{pmatrix}x_1 \\ 0 \\ x_3\end{pmatrix}, \tilde{w}_2=\begin{pmatrix}\tilde{x}_1 \\ 0 \\ \tilde{x}_3\end{pmatrix}\in \tilde{W}$. Then $\tilde{w}_1+\tilde{w}_2=\begin{pmatrix}x_1+\tilde{x}_1 \\ 0 \\ x_3+\tilde{x}_3\end{pmatrix}\in \tilde{W}$.
    3. Let $\tilde{w}=\begin{pmatrix}x_1 \\ 0 \\ x_3\end{pmatrix}\in \tilde{W}$ and $\alpha\in \mathbb{R}$. Then $\alpha\cdot \tilde{w}=\begin{pmatrix}\alpha x_1 \\ 0 \\ \alpha x_3\end{pmatrix}\in \tilde{W}$.
    Therefore $\tilde{W}$ is a subspace and so $W$ is an affine subspace.

    $$$$
  • We consider the subset $S$.
    1. It holds that $S\neq \emptyset$, since $\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}$ is in $S$.
    2. Let $s_1=\begin{pmatrix}\lambda_1 \\ 0 \\ -\lambda_1 \end{pmatrix}, s_2=\begin{pmatrix}\lambda_2 \\ 0 \\ -\lambda_2\end{pmatrix}\in S$. Then $s_1+s_2=\begin{pmatrix}\lambda_1 \\ 0 \\ -\lambda_1 \end{pmatrix}+\begin{pmatrix}\lambda_2 \\ 0 \\ -\lambda_2\end{pmatrix}=\left (\lambda_1+\lambda_2\right )\cdot \begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\in S$.
    3. Let $s=\lambda\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\in S$ and $\alpha\in \mathbb{R}$. Then $\alpha\cdot s=\alpha\cdot \lambda\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}=\left (\alpha\cdot \lambda\right )\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\in S$.
    Therefore $S$ is a subspace.
    $$$$
  • We consider the subset $T$.

    It holds that \begin{equation*}T:=\left \{\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}+\lambda\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\mid \lambda \in \mathbb{R}\right \}=\left \{\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}+s\mid s\in S\right \}\end{equation*}

    Since $S$ is a subspace it follows that $T$ is an affine subspace.
Is everything correct and complete? (Wondering)

Does it hold in general that a subset is either a subspace or an affine subspace? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
Is everything correct and complete?

Yep. All in order. (Nod)

mathmari said:
Does it hold in general that a subset is either a subspace or an affine subspace?

Nope. (Shake)

Suppose we add a single non-zero vector to any of these spaces that is not already in it.
Let's say we add $(1,0,0)$ to them.
Are they still subspaces or affine subspaces then? (Wondering)
 
Klaas van Aarsen said:
Yep. All in order. (Nod)
Nope. (Shake)

Suppose we add a single non-zero vector to any of these spaces that is not already in it.
Let's say we add $(1,0,0)$ to them.
Are they still subspaces or affine subspaces then? (Wondering)
? Yes, it is an affine subset. (I would not use the term "affine subspace".)

An example of a subset of a vector space that is neither a subspace nor an affine subset is \{\begin{pmatrix}x \\ y \\ z \end{pmatrix}| x^2+ y^2+ z^2|= 1\}.
 
Last edited by a moderator:
Ahh ok! Thank you! (Malthe)
 

Similar threads

Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
31
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K