MHB Decide if the sets are subspaces or affine subspaces

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Sets Subspaces
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the subsets \begin{equation*}V:=\left \{\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix}\mid x_1=0\right \}, \ \ \ W:=\left \{\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix}\mid x_2=2\right \}, \ \ \ S:=\left \{\lambda \begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\mid \lambda \in \mathbb{R}\right \}, \\ T:=\left \{\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}+\lambda\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\mid \lambda \in \mathbb{R}\right \}\end{equation*}

I want to check which are subspaces and which are affine subspaces.

I have done the following:

  • We consider the subset $V$.
    1. It holds that $V\neq \emptyset$, since for example $\begin{pmatrix}0 \\ 0 \\ 0\end{pmatrix}$ is in $V$.
    2. We consider two elements of $V$, $v_1=\begin{pmatrix}0 \\ x_2 \\ x_3\end{pmatrix}$, $v_2=\begin{pmatrix}0 \\ \tilde{x}_2 \\ \tilde{x}_3\end{pmatrix}$. Then the sum is $v_1+v_2=\begin{pmatrix}0 \\ x_2+\tilde{x}_2 \\ x_3+\tilde{x}_3\end{pmatrix}\in V$.
    3. Let $v=\begin{pmatrix}0 \\ x_2 \\ x_3\end{pmatrix}\in V$ and $\alpha\in \mathbb{R}$. Then $\alpha\cdot v=\begin{pmatrix}0 \\ \alpha x_2 \\ \alpha x_3\end{pmatrix}\in V$.
    That means that $V$ is a subspace.

    $$$$
  • We consider the subset $W$.
    1. It holds that $W\neq \emptyset$, since for example $\begin{pmatrix}0 \\ 2 \\ 0\end{pmatrix}\in W$.
    2. Let $w_1=\begin{pmatrix}x_1 \\ 2 \\ x_3\end{pmatrix}, w_2=\begin{pmatrix}\tilde{x}_1 \\ 2 \\ \tilde{x}_3\end{pmatrix}\in W$. Then $w_1+w_2=\begin{pmatrix}x_1+\tilde{x}_1 \\ 4 \\ x_3+\tilde{x}_3\end{pmatrix}\notin W$.
    So $W$ is not a subspace.

    We can write this subset in the form:
    \begin{equation*}W:=\left \{\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix}\mid x_2=2\right \}=\left \{\begin{pmatrix}x_1 \\ 2 \\ x_3\end{pmatrix}\right \}=\left \{\begin{pmatrix}0 \\ 2 \\ 0\end{pmatrix}+\begin{pmatrix}x_1 \\ 0 \\ x_3\end{pmatrix}\right \}\end{equation*}

    We show that the set $\tilde{W}=\left \{\begin{pmatrix}x_1 \\ 0 \\ x_3\end{pmatrix}\right \}$ is s subspace, and then $W=\left \{\begin{pmatrix}0 \\ 2 \\ 0\end{pmatrix}+\tilde{w}\mid \tilde{w}\in \tilde{W}\right \} $ is an affine subspace.
    1. It holds that $\tilde{W}\neq \emptyset$, since for example the vector $\begin{pmatrix}0 \\ 0 \\ 0\end{pmatrix}$ is contained.
    2. Let $\tilde{w}_1=\begin{pmatrix}x_1 \\ 0 \\ x_3\end{pmatrix}, \tilde{w}_2=\begin{pmatrix}\tilde{x}_1 \\ 0 \\ \tilde{x}_3\end{pmatrix}\in \tilde{W}$. Then $\tilde{w}_1+\tilde{w}_2=\begin{pmatrix}x_1+\tilde{x}_1 \\ 0 \\ x_3+\tilde{x}_3\end{pmatrix}\in \tilde{W}$.
    3. Let $\tilde{w}=\begin{pmatrix}x_1 \\ 0 \\ x_3\end{pmatrix}\in \tilde{W}$ and $\alpha\in \mathbb{R}$. Then $\alpha\cdot \tilde{w}=\begin{pmatrix}\alpha x_1 \\ 0 \\ \alpha x_3\end{pmatrix}\in \tilde{W}$.
    Therefore $\tilde{W}$ is a subspace and so $W$ is an affine subspace.

    $$$$
  • We consider the subset $S$.
    1. It holds that $S\neq \emptyset$, since $\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}$ is in $S$.
    2. Let $s_1=\begin{pmatrix}\lambda_1 \\ 0 \\ -\lambda_1 \end{pmatrix}, s_2=\begin{pmatrix}\lambda_2 \\ 0 \\ -\lambda_2\end{pmatrix}\in S$. Then $s_1+s_2=\begin{pmatrix}\lambda_1 \\ 0 \\ -\lambda_1 \end{pmatrix}+\begin{pmatrix}\lambda_2 \\ 0 \\ -\lambda_2\end{pmatrix}=\left (\lambda_1+\lambda_2\right )\cdot \begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\in S$.
    3. Let $s=\lambda\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\in S$ and $\alpha\in \mathbb{R}$. Then $\alpha\cdot s=\alpha\cdot \lambda\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}=\left (\alpha\cdot \lambda\right )\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\in S$.
    Therefore $S$ is a subspace.
    $$$$
  • We consider the subset $T$.

    It holds that \begin{equation*}T:=\left \{\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}+\lambda\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\mid \lambda \in \mathbb{R}\right \}=\left \{\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}+s\mid s\in S\right \}\end{equation*}

    Since $S$ is a subspace it follows that $T$ is an affine subspace.
Is everything correct and complete? (Wondering)

Does it hold in general that a subset is either a subspace or an affine subspace? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
Is everything correct and complete?

Yep. All in order. (Nod)

mathmari said:
Does it hold in general that a subset is either a subspace or an affine subspace?

Nope. (Shake)

Suppose we add a single non-zero vector to any of these spaces that is not already in it.
Let's say we add $(1,0,0)$ to them.
Are they still subspaces or affine subspaces then? (Wondering)
 
Klaas van Aarsen said:
Yep. All in order. (Nod)
Nope. (Shake)

Suppose we add a single non-zero vector to any of these spaces that is not already in it.
Let's say we add $(1,0,0)$ to them.
Are they still subspaces or affine subspaces then? (Wondering)
? Yes, it is an affine subset. (I would not use the term "affine subspace".)

An example of a subset of a vector space that is neither a subspace nor an affine subset is \{\begin{pmatrix}x \\ y \\ z \end{pmatrix}| x^2+ y^2+ z^2|= 1\}.
 
Last edited by a moderator:
Ahh ok! Thank you! (Malthe)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
14
Views
2K
Replies
31
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K