Decide if the sets are subspaces or affine subspaces

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Sets Subspaces
Click For Summary

Discussion Overview

The discussion revolves around determining whether specific subsets of a vector space are subspaces or affine subspaces. The subsets in question are defined in terms of linear combinations and specific conditions on their elements, with participants exploring the properties of these subsets in a mathematical context.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant argues that subset V is a subspace, providing reasoning based on its non-emptiness and closure under addition and scalar multiplication.
  • Another participant agrees with the assessment of V as a subspace.
  • Regarding subset W, one participant concludes it is not a subspace because the sum of two elements does not remain in W, but suggests it is an affine subspace by relating it to a subspace defined as tilde W.
  • Participants confirm that subset S is a subspace, citing similar reasoning about closure properties.
  • Subset T is described as an affine subspace because it is derived from a subspace (S) by adding a fixed vector.
  • There is a question about whether a subset can be neither a subspace nor an affine subspace, with one participant asserting that it can be the case, providing an example of a subset defined by a non-linear condition.
  • Some participants express uncertainty about the implications of adding a non-zero vector to the subsets and whether this would affect their classification as subspaces or affine subsets.

Areas of Agreement / Disagreement

Participants generally agree on the classifications of subsets V, S, and T, but there is disagreement regarding the generality of subsets being classified strictly as subspaces or affine subspaces. The discussion remains unresolved on the implications of adding non-zero vectors to these subsets.

Contextual Notes

There are unresolved questions about the conditions under which subsets can be classified as neither subspaces nor affine subsets, as well as the effects of modifying these subsets by adding vectors.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the subsets \begin{equation*}V:=\left \{\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix}\mid x_1=0\right \}, \ \ \ W:=\left \{\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix}\mid x_2=2\right \}, \ \ \ S:=\left \{\lambda \begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\mid \lambda \in \mathbb{R}\right \}, \\ T:=\left \{\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}+\lambda\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\mid \lambda \in \mathbb{R}\right \}\end{equation*}

I want to check which are subspaces and which are affine subspaces.

I have done the following:

  • We consider the subset $V$.
    1. It holds that $V\neq \emptyset$, since for example $\begin{pmatrix}0 \\ 0 \\ 0\end{pmatrix}$ is in $V$.
    2. We consider two elements of $V$, $v_1=\begin{pmatrix}0 \\ x_2 \\ x_3\end{pmatrix}$, $v_2=\begin{pmatrix}0 \\ \tilde{x}_2 \\ \tilde{x}_3\end{pmatrix}$. Then the sum is $v_1+v_2=\begin{pmatrix}0 \\ x_2+\tilde{x}_2 \\ x_3+\tilde{x}_3\end{pmatrix}\in V$.
    3. Let $v=\begin{pmatrix}0 \\ x_2 \\ x_3\end{pmatrix}\in V$ and $\alpha\in \mathbb{R}$. Then $\alpha\cdot v=\begin{pmatrix}0 \\ \alpha x_2 \\ \alpha x_3\end{pmatrix}\in V$.
    That means that $V$ is a subspace.

    $$$$
  • We consider the subset $W$.
    1. It holds that $W\neq \emptyset$, since for example $\begin{pmatrix}0 \\ 2 \\ 0\end{pmatrix}\in W$.
    2. Let $w_1=\begin{pmatrix}x_1 \\ 2 \\ x_3\end{pmatrix}, w_2=\begin{pmatrix}\tilde{x}_1 \\ 2 \\ \tilde{x}_3\end{pmatrix}\in W$. Then $w_1+w_2=\begin{pmatrix}x_1+\tilde{x}_1 \\ 4 \\ x_3+\tilde{x}_3\end{pmatrix}\notin W$.
    So $W$ is not a subspace.

    We can write this subset in the form:
    \begin{equation*}W:=\left \{\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix}\mid x_2=2\right \}=\left \{\begin{pmatrix}x_1 \\ 2 \\ x_3\end{pmatrix}\right \}=\left \{\begin{pmatrix}0 \\ 2 \\ 0\end{pmatrix}+\begin{pmatrix}x_1 \\ 0 \\ x_3\end{pmatrix}\right \}\end{equation*}

    We show that the set $\tilde{W}=\left \{\begin{pmatrix}x_1 \\ 0 \\ x_3\end{pmatrix}\right \}$ is s subspace, and then $W=\left \{\begin{pmatrix}0 \\ 2 \\ 0\end{pmatrix}+\tilde{w}\mid \tilde{w}\in \tilde{W}\right \} $ is an affine subspace.
    1. It holds that $\tilde{W}\neq \emptyset$, since for example the vector $\begin{pmatrix}0 \\ 0 \\ 0\end{pmatrix}$ is contained.
    2. Let $\tilde{w}_1=\begin{pmatrix}x_1 \\ 0 \\ x_3\end{pmatrix}, \tilde{w}_2=\begin{pmatrix}\tilde{x}_1 \\ 0 \\ \tilde{x}_3\end{pmatrix}\in \tilde{W}$. Then $\tilde{w}_1+\tilde{w}_2=\begin{pmatrix}x_1+\tilde{x}_1 \\ 0 \\ x_3+\tilde{x}_3\end{pmatrix}\in \tilde{W}$.
    3. Let $\tilde{w}=\begin{pmatrix}x_1 \\ 0 \\ x_3\end{pmatrix}\in \tilde{W}$ and $\alpha\in \mathbb{R}$. Then $\alpha\cdot \tilde{w}=\begin{pmatrix}\alpha x_1 \\ 0 \\ \alpha x_3\end{pmatrix}\in \tilde{W}$.
    Therefore $\tilde{W}$ is a subspace and so $W$ is an affine subspace.

    $$$$
  • We consider the subset $S$.
    1. It holds that $S\neq \emptyset$, since $\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}$ is in $S$.
    2. Let $s_1=\begin{pmatrix}\lambda_1 \\ 0 \\ -\lambda_1 \end{pmatrix}, s_2=\begin{pmatrix}\lambda_2 \\ 0 \\ -\lambda_2\end{pmatrix}\in S$. Then $s_1+s_2=\begin{pmatrix}\lambda_1 \\ 0 \\ -\lambda_1 \end{pmatrix}+\begin{pmatrix}\lambda_2 \\ 0 \\ -\lambda_2\end{pmatrix}=\left (\lambda_1+\lambda_2\right )\cdot \begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\in S$.
    3. Let $s=\lambda\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\in S$ and $\alpha\in \mathbb{R}$. Then $\alpha\cdot s=\alpha\cdot \lambda\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}=\left (\alpha\cdot \lambda\right )\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\in S$.
    Therefore $S$ is a subspace.
    $$$$
  • We consider the subset $T$.

    It holds that \begin{equation*}T:=\left \{\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}+\lambda\begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix}\mid \lambda \in \mathbb{R}\right \}=\left \{\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}+s\mid s\in S\right \}\end{equation*}

    Since $S$ is a subspace it follows that $T$ is an affine subspace.
Is everything correct and complete? (Wondering)

Does it hold in general that a subset is either a subspace or an affine subspace? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
Is everything correct and complete?

Yep. All in order. (Nod)

mathmari said:
Does it hold in general that a subset is either a subspace or an affine subspace?

Nope. (Shake)

Suppose we add a single non-zero vector to any of these spaces that is not already in it.
Let's say we add $(1,0,0)$ to them.
Are they still subspaces or affine subspaces then? (Wondering)
 
Klaas van Aarsen said:
Yep. All in order. (Nod)
Nope. (Shake)

Suppose we add a single non-zero vector to any of these spaces that is not already in it.
Let's say we add $(1,0,0)$ to them.
Are they still subspaces or affine subspaces then? (Wondering)
? Yes, it is an affine subset. (I would not use the term "affine subspace".)

An example of a subset of a vector space that is neither a subspace nor an affine subset is \{\begin{pmatrix}x \\ y \\ z \end{pmatrix}| x^2+ y^2+ z^2|= 1\}.
 
Last edited by a moderator:
Ahh ok! Thank you! (Malthe)
 

Similar threads

Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
31
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K