- #1
- 6,724
- 431
In general, how do you define the dimension of a singularity? E.g., we think of a Schwarzschild singularity as pointlike, so that its world-line is one-dimensional, and on a conformal diagram we represent it as a spacelike line, which seems to make sense.
In point-set topology, we have definitions of dimension like the Lebesgue covering dimension and the inductive dimension, but this doesn't seem to help in the case of a singularity, which isn't actually part of the manifold.
If you define a singularity by saying that a spacetime has a singularity if there are incomplete geodesics, then maybe you need to define the dimension of the singularity by saying something about the dimensionality of the set of incomplete geodesics...?
In point-set topology, we have definitions of dimension like the Lebesgue covering dimension and the inductive dimension, but this doesn't seem to help in the case of a singularity, which isn't actually part of the manifold.
If you define a singularity by saying that a spacetime has a singularity if there are incomplete geodesics, then maybe you need to define the dimension of the singularity by saying something about the dimensionality of the set of incomplete geodesics...?