Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I've been trying to evaluate the following integral

[tex] \int_{z}^{\infty}\exp\left(-y^{2}\right)\mathrm{erf}\left(b\left(y-c\right)\right)\,\mathrm{d}y [/tex]

or equivalently

[tex] \int_{z}^{\infty}\exp\left(-y^{2}\right)\mathrm{erfc}\left(b\left(y-c\right)\right)\,\mathrm{d}y [/tex]

[tex]\mathrm{erf}\left(x\right)=\frac{2}{\sqrt{\pi}} \int_{0}^{x}\exp\left(-u^{2}\right)\,\mathrm{d}u, \quad\quad \mathrm{erfc}\left(x\right)=1-\mathrm{erf}\left(x\right)=\frac{2}{\sqrt{\pi}} \int_{x}^{+\infty}\exp\left(-u^{2}\right)\,\mathrm{d}u[/tex]

I guess I tried to employ all techniques I'm familiar with but with no result.

Can anyone help me with this one, please?

Thank you!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Definite integral of exp and error function

**Physics Forums | Science Articles, Homework Help, Discussion**