Definite integral on elliptic integral where modulus is function of variable

Click For Summary

Discussion Overview

The discussion revolves around the evaluation of a definite integral involving elliptic integrals, specifically focusing on the integral of a function that includes a modulus dependent on a variable. The context includes theoretical exploration and mathematical reasoning related to elliptic integrals.

Discussion Character

  • Mathematical reasoning
  • Exploratory
  • Homework-related

Main Points Raised

  • Post 1 presents a specific integral to be proven, involving the complete elliptic integral of the first kind and a modulus that is a function of the variable.
  • Post 3 reiterates the integral and requests corrections, emphasizing the need for proper notation in the expression.
  • Post 4 mentions attempts to simplify the integral, leading to a modified identity that suggests a different form of the integral, but notes that the process has become increasingly complicated.
  • Participants express a need for clarity on what has been tried and where difficulties lie to facilitate better assistance.

Areas of Agreement / Disagreement

There is no consensus on the approach to solving the integral, as participants express different methods and modifications without agreeing on a definitive solution.

Contextual Notes

Participants have not reached a resolution on the integral's evaluation, and there are indications of missing assumptions or dependencies on specific definitions related to elliptic integrals.

bshoor
Messages
5
Reaction score
1
How to prove:

$\int_{0}^{\frac{\pi }{2}} {\frac{\sin \theta}{\sqrt{Z^2+(R+h \tan \theta)^2}} K[k(\theta)]}=\frac{\pi }{2\sqrt{R^2 + (h+Z)^2}} $

where \[ k(\theta)=\sqrt\frac{4Rh \tan \theta}{Z^2+(R+h \tan \theta)^2}\]

and $ K[k(\theta)] $ is the complete elliptic integral of the first kind, defined by

\[ K[k(\theta)]= \int_0^{\frac{\pi }{2}}\frac{\,d\phi}{\sqrt{1-k^2(\theta)\sin^2 \phi}}\]

and h, R and Z $ \gt 0 $
 
Physics news on Phys.org
Can you show us what you have tried and where you are stuck? This will give our helpers a better idea how to provide help without perhaps offering suggestions that you may already be trying.
 
bshoor said:
How to prove:

$\int_{0}^{\frac{\pi }{2}} {\frac{\sin \theta}{\sqrt{Z^2+(R+h \tan \theta)^2}} K[k(\theta)]}=\frac{\pi }{2\sqrt{R^2 + (h+Z)^2}} $

where \[ k(\theta)=\sqrt\frac{4Rh \tan \theta}{Z^2+(R+h \tan \theta)^2}\]

and $ K[k(\theta)] $ is the complete elliptic integral of the first kind, defined by

\[ K[k(\theta)]= \int_0^{\frac{\pi }{2}}\frac{\,d\phi}{\sqrt{1-k^2(\theta)\sin^2 \phi}}\]

and h, R and Z $ \gt 0 $
Please make correction of the post:
$\int_{0}^{\frac{\pi }{2}} {\frac{\sin \theta}{\sqrt{Z^2+(R+h \tan \theta)^2}} K[k(\theta)]}d\theta=\frac{\pi }{2\sqrt{R^2 + (h+Z)^2}} $
 
MarkFL said:
Can you show us what you have tried and where you are stuck? This will give our helpers a better idea how to provide help without perhaps offering suggestions that you may already be trying.

I have tried in different ways. But the integral becomes more and more complicated. Anyway the identity can be modified to :

$\int_{0}^{\frac{\pi }{2}}{\sqrt {\sin \theta cos\theta}k(\theta) K[k(\theta)]}d\theta=\pi \sqrt{ \frac{Rh}{R^2 + (h+Z)^2}} $

by multiplying both side by $ 2 \sqrt{Rh} $
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K