- #1
- 655
- 0
Homework Statement
A cruve has the equation [tex]y = x{3} - 8x^{2} + 20x [/tex]. The curve has stationary points A and B. There is a line through B parallel to y-axis and meets the x-axis at the point N. The region R is bounded by the curve , the x-axis and the line from A to N. Find the exact area under the curve
Homework Equations
The Attempt at a Solution
Well I found the x co-ords of A and B, which is [tex]\frac{10}{3}[/tex] or 2. I intergrated the curve and got
[tex]\frac{4x^{3}}{4} - \frac{8x^{3}}{3}+10x^{2}[/tex]
no +C as we'll be having limits i presume
But i don't know how to get the area of region R... as there is a stupid line in the way!
Can somebody show/help me to do it.
Thanks :)