Undergrad Definition of manifolds with boundary

Click For Summary
In differential geometry, the boundary of a manifold is defined as points that can be mapped to the boundary of the half-space model, specifically the set where the last coordinate equals zero. This definition requires that the manifold is locally homeomorphic to the half-space, rather than the entire Euclidean space. The discussion highlights a distinction between needing a point to be mapped to the boundary and simply having a chart where it can be mapped. The alteration from the topological definition of boundaries is questioned, but it is clarified that the boundary of the half-space is inherently understood as part of the manifold's structure. Overall, the conversation emphasizes the importance of local homeomorphism in defining boundary points in manifolds.
PhysicsRock
Messages
121
Reaction score
19
TL;DR
Why do we define manifolds with boundary differently from the topological definition of the boundary?
In differential geometry, we typically define the boundary ##\partial M## of a manifold ##M## as all ##p \in M## for which there exists a chart ##(U,\varphi), p \in U## such that ##\varphi(p) \in \partial\mathbb{H}^n := \{ x \in \mathbb{R}^n : x^n = 0 \}##. Consequently, we also demand that ##M## is locally homeomorphic to ##\mathbb{H}^n := \{ x \in \mathbb{R}^n : x^n \geq 0 \}##, instead of ##\mathbb{R}^n## as in the (usually) previously encountered definitions of topological manifolds.

For such topological manifolds, the boundary is typically defined to be the closure of ##M## without it's interior, i.e. ##\partial M_{top} = \bar{M} \setminus \mathring{M}##. Perhaps I'm missing something, but theoretically I don't see any restrictions in this definition that would demand that boundary points are to be mapped onto the boundary of ##\mathbb{H}^n##.

My question is, why do we make that alteration?
 
Physics news on Phys.org
PhysicsRock said:
theoretically I don't see any restrictions in this definition that would demand that boundary points are to be mapped onto the boundary of Hn.
There is a big difference between needing to be mapped like that and there existing a chart where it is.
 
Orodruin said:
There is a big difference between needing to be mapped like that and there existing a chart where it is.

Orodruin said:
There is a big difference between needing to be mapped like that and there existing a chart where it is.
The way I understand it is that if a point ##p \in M## lies within a chart ##(U,\varphi)## and ##\varphi(p) \in \partial\mathbb{H}^n## then ##p## is considered to be a boundary point. The set of all such ##p## is then called the boundary of ##M##.

However, what I don't understand is why we alter the definition from that of the boundary of topological spaces, as given here.
 
PhysicsRock said:
However, what I don't understand is why we alter the definition from that of the boundary of topological spaces, as given here.
It doesn't, really. It should be clear that ##\partial \mathbb H## is the boundary of ##\mathbb H## and the chart is a homeomorphism.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
872
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
527
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 44 ·
2
Replies
44
Views
5K
  • · Replies 37 ·
2
Replies
37
Views
3K