Depth required for a given pressure

  • Thread starter Thread starter Monsterboy
  • Start date Start date
  • Tags Tags
    Depth Pressure
Click For Summary
The discussion revolves around calculating the depth of the atmosphere required to produce a pressure of 1.0132 bar at the Earth's surface, using the equation pv^1.4 = 2.3 * 10^3. Participants express confusion over the changing density with depth and the correct integration methods to arrive at the atmospheric height. Several calculations yield varying results, with one participant suggesting that the constant in the equation might be incorrectly stated, leading to discrepancies in the expected atmospheric depth. Ultimately, the consensus is that the provided constant of 2.3 * 10^3 is likely too small, with more accurate estimates suggesting a depth closer to 8 km rather than the initially proposed 64.8 km. The problem is acknowledged as more of a mathematical exercise than a precise representation of atmospheric conditions.
Monsterboy
Messages
304
Reaction score
96

Homework Statement


Assume that the pressure p and the specific volume v of the atmosphere are related according to the equation ## pv^{1.4} =2.3*10^3 ## where p is in ## N/m^2 ## and v is in ##m^3/kg ##. The acceleration due to gravity is constant at 9.81 ##m/sec^2## .What is the depth of atmosphere necessary to produce a pressure of 1.0132 bar at the Earth's surface ? Consider the atmosphere as a fluid column.

Homework Equations


## pv^{1.4}=2.3*10^3 ##
##P= \rho gh ##

The Attempt at a Solution



I don't know how to account for the change in density with depth , i just substituted the value of ## 1/v ## ( the v corresponds to the pressure 1.0132 bar in the equation ## pv^{1.4} =2.3*10^3 ## ) in the equation ##P= \rho gh ## , i got h= 691.46452 m which is obviously wrong .

The answer given is 64.8 km ,can anyone tell me how to account for the change in density with depth ?
 
Physics news on Phys.org
Have you tried using the state equation?
 
You find the temperatures using the state equation ? What next ?
 
If the density varies with altitude h, then the static equilibrium equation becomes $$\frac{dp}{dh}=-\rho g=-\frac{g}{v}$$Does that help?
 
  • Like
Likes Monsterboy
Chestermiller said:
If the density varies with altitude h, then the static equilibrium equation becomes $$\frac{dp}{dh}=-\rho g=-\frac{g}{v}$$Does that help?
I don't know ... so by that we get ## v = -\frac{dh}{dp}g ##

substituting in the first equation in post #1

##v =( \frac{2300}{p})^{1/1.4} = - \frac{dh}{dp}g ##

##gdh = -( \frac{2300}{p})^{1/1.4}dp ##

## \int_0^H dh \, = \frac{2300^{1/1.4}}{g} \int_0^p \frac{dp}{p^{1/1.4}} \, ## where p =101325 Pa

I got h= 2.42012 km much less than 64.8 km
 
Monsterboy said:
I don't know ... so by that we get ## v = -\frac{dh}{dp}g ##

substituting in the first equation in post #1

##v =( \frac{2300}{p})^{1/1.4} = - \frac{dh}{dp}g ##

##gdh = -( \frac{2300}{p})^{1/1.4}dp ##

## \int_0^H dh \, = \frac{2300^{1/1.4}}{g} \int_0^p \frac{dp}{p^{1/1.4}} \, ## where p =101325 Pa

I got h= 2.42012 km much less than 64.8 km
You are missing the minus sign. Please show us the details of your integration, and your result for h as a function of p.
 
Just a suggestion: (Otherwise I think you are trying to do something that might be mathematically inconsistent): For atmospheric extent, define it as the height ## H ## where the pressure is ## p=p_0 e^{-1} ##. i.e. The two limits on your atmospheric pressure in the ## dp ## integral should be ## p_0 ## (pressure at Earth's surface) and ## p_0 e^{-1} ## (location where pressure is ## p_0 e^{-1} ## defines height(extent) of atmosphere.) Otherwise your H needs to be infinity in order to get zero pressure...editing...I do think the equation ## p v^{1.4}=2300 ## may have the pressure ## p ## in atmospheres. Otherwise, the result is a density that is about ## 30 kg/m^3 ##. A couple additional calculations gave me the result that the 2.3 E+3 number is too small even if p is in atmospheres. For p in N/m^2, I get the result that ## p v^{1.4}=6.3 E+4 ## (approximately). Also, the answer of 64.8 km that you provided in post #1 does not agree with a google that shows the atmospheric pressure to drop to a 1/2 pressure level at about h=5.5 km. A number in the 8 km range or less is much more realistic (the 1/e point).
 
Last edited:
  • Like
Likes Monsterboy
You have ##P(0)=101325=\int_0^\infty{ \left(-\frac{g}{v}\right)dh}##. Knowing the pressure at ground level, what is the specific volume at ground level? Call this ##v(0)##. To get the equivalent thickness of the atmosphere H, just do this:
$$P(0)=\frac{g}{v(0)}H$$
What do you get? The answer ought to come out to about 7 km.
 
Chestermiller said:
You have ##P(0)=101325=\int_0^\infty{ \left(-\frac{g}{v}\right)dh}##. Knowing the pressure at ground level, what is the specific volume at ground level? Call this ##v(0)##. To get the equivalent thickness of the atmosphere H, just do this:
$$P(0)=\frac{g}{v(0)}H$$
What do you get?
I am working without a calculator (using logs and estimates, etc. ), but that would be the same as the 1/e point for which I am getting something in the 8 km range. I do think the numbers that the OP has been provided with are incorrect.
 
  • #10
Charles Link said:
I am working without a calculator (using logs and estimates, etc. ), but that would be the same as the 1/e point for which I am getting something in the 8 km range. I do think the numbers that the OP has been provided with are incorrect.
I agree. I think that the answer they provided by them is incorrect. I have quite a bit of practical experience with this particular kind of thing from my work in atmospheric science.
 
  • Like
Likes Charles Link
  • #11
Chestermiller said:
I agree. I think that the answer they provided by them is incorrect. I have quite a bit of practical experience with this particular kind of thing from my work in atmospheric science.
Additional comment is in the problem statement of the OP, they made it like the atmosphere is some sort of dense fluid that can stop abruptly at 10 miles up. The pressure/density ## dp/dh=-g/v ## equation that is used assumes continuity to infinity...
 
  • Like
Likes Chestermiller
  • #12
A correction to my post #7=the pressure is not in atmospheres in that equation, but the number ## p v^{1.4}=6.3 E+4 ## is much more realistic (with pressure in N/m^2) than 2.3 E+3. (And disregard the statement : "A couple of additional calculations gave the result that the number 2.3 E+3 is too small even if p is in atmospheres"... (I am unable to edit it to remove it)...My latest calculations show that if p is in atmospheres, ## p v^{1.4}=.63 ##(approximately)).
 
Last edited:
  • Like
Likes Monsterboy
  • #13
Charles Link said:
A correction to my post #7=the pressure is not in atmospheres in that equation, but the number ## p v^{1.4}=6.3 E+4 ## is much more realistic (with pressure in N/m^2) than 2.3 E+3. (And disregard the statement : "A couple of additional calculations gave the result that the number 2.3 E+3 is too small even if p is in atmospheres"... (I am unable to edit it to remove it)...My latest calculations show that if p is in atmospheres, ## p v^{1.4}=.63 ##(approximately)).
My best estimate of v(0) is 0.814 m^3/kg, based on the ideal gas law and an average global surface temperature of 15 C. This gives ##pv^{1.4}=76000## and an equivalent atmospheric thickness of 8.5 km. I agree that 2300 is too small.
 
  • Like
Likes Monsterboy and Charles Link
  • #14
Chestermiller said:
You have ##P(0)=101325=\int_0^\infty{ \left(-\frac{g}{v}\right)dh}##. Knowing the pressure at ground level, what is the specific volume at ground level? Call this ##v(0)##. To get the equivalent thickness of the atmosphere H, just do this:
$$P(0)=\frac{g}{v(0)}H$$
What do you get? The answer ought to come out to about 7 km.
I got H= 8.431 km by taking
## v(0) = 0.816 m^3/kg ##

Thanks for the help !
 
  • #15
I've seen a statement of this problem posted on another forum that gives the value of the constant as ##2.3\times 10^5## rather than ##2.3\times 10^3##. With this value, using the methodology indicated by @Monsterboy in post #5, I obtain a value of H=64.8 km, which matches the book solution:
http://physics.stackexchange.com/questions/282336/calculating-the-height-of-a-column-of-air
 
Last edited by a moderator:
  • Like
Likes Monsterboy
  • #16
Chestermiller said:
I've seen a statement of this problem posted on another forum that gives the value of the constant as ##2.3\times 10^5## rather than ##2.3\times 10^3##. With this value, using the methodology indicated by @Monsterboy in post #5, I obtain a value of H=64.8 km, which matches the book solution:
http://physics.stackexchange.com/questions/282336/calculating-the-height-of-a-column-of-air
The problem is somewhat subjective since this equation of state is only going to be followed approximately by the atmosphere, but if one looks at the atmosphere at the surface of the earth, I think the number of 7.6 E+4 given by @Chestermiller in post #13 is more accurate. I had estimated 6.3 E+4 in post #12 for this number, so it appears there is a fair amount of disparity in what the value of this number may be.
 
Last edited by a moderator:
  • #17
Charles Link said:
The problem is somewhat subjective since this equation of state is only going to be followed approximately by the atmosphere, but if one looks at the atmosphere at the surface of the earth, I think the number of 7.6 E+4 given by @Chestermiller in post #13 is more accurate.
Yes. I agree. This problem bears very little resemblance to the actual atmosphere. In my judgment, it is nothing more than a mathematical exercise. At least we know now why @Monsterboy didn't match the book answer. I took his answer in post #5 and multiplied by ##100^{1/1.4}##; this yielded the book answer.
 
  • Like
Likes Charles Link

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 2 ·
Replies
2
Views
2K