Derivation of Average Square Energy Fluctuation in a Canonical System

  • #1
phun_physics
2
1
TL;DR Summary
I am currently reading through Chandler's Introduction to Modern Statistical Mechanics and would like insight into this derivation
The canonical ( Boltzmann) distribution law for a canonical system is described the probability of state ##v## by ##P_v = Q^{-1} e^{-\beta E_v} ## where ##Q^{-1}## is the normalization constant of ##\sum_v P_v = 1## and therefore ##Q = \sum_{v}e^{-\beta E_v}##. Chandler then derives ## \langle( \delta E_v)^2 \rangle## in the attachment.

I am confused on how he went from these steps: ##Q^{-1}(\partial^2 Q / \partial \beta^2)_{N, V} - Q^{-2}(\partial Q / \partial \beta)^{2}_{N,V}## = ##(\partial ^2 lnQ / \partial \beta^2)_{N,V}##

Any help would be extremely appreciated! Thanks!
 

Attachments

  • derivation.PNG
    derivation.PNG
    34.7 KB · Views: 159

Answers and Replies

  • #2
DrClaude
Mentor
8,127
4,948
I am confused on how he went from these steps: ##Q^{-1}(\partial^2 Q / \partial \beta^2)_{N, V} - Q^{-2}(\partial Q / \partial \beta)^{2}_{N,V}## = ##(\partial ^2 lnQ / \partial \beta^2)_{N,V}##
Do it backwards. Start from ##(\partial ^2 \ln Q / \partial \beta^2)_{N,V}## and calculate the derivatives.
 
Top