- #1
Karol
- 1,380
- 22
Homework Statement
$$\int\frac{dx}{x\sqrt{x^2-1}}=\left\{ \begin{array} {lc} \sec^{-1}(x)+C_1 & {\rm if}~x>1 \\ \sec^{-1}(-x)+C_2 & {\rm if}~x<-1 \end{array} \right.$$
Why the second condition ##\sec^{-1}(-x)+C_2~~{\rm if}~x<-1## ?
Homework Equations
Derivative of inverse secant:
$$(\sec^{-1}(x))'=\frac{1}{x(\pm\sqrt{x^2-1})}$$
The Attempt at a Solution
The derivative is positive from -∞ to +∞ (the green lines). as i understand i have to make the function ##\sec^{-1}(-x)## positive when x<-1, but if ##y=\sec^{-1}(x)## is defined like in the drawing it is positive alsways