Deriving a formula for KE (rolling + projection)

Click For Summary
The discussion focuses on deriving the kinetic energy formula E_k=(gmR^2)/4h for a ball projected from a ramp. Participants emphasize the need to clarify the problem statement and show prior effort to solve it. The kinetic energy at projection, rather than at landing, is highlighted, with the importance of including rotational kinetic energy in calculations. Key equations mentioned include the moment of inertia for a solid sphere and the relationships between time, radius, and velocity. Understanding these concepts is essential for accurately deriving the kinetic energy formula.
foreverlostinclass
Messages
1
Reaction score
0
Homework Statement
A ball is rolled down a ramp, then projected a distance R from the end of a curved ramp. The kinetic energy of the ball when it lands is given by the equation: E_k=(gmR^2)/4h, where g is the gravitational acceleration constant (9.81 m/s^2), m is the mass of the ball & h is the height from the ground to the bottom of the ramp.
Edit: Actually it's the kinetic energy when the ball is projected, not when it lands (sorry, misread the description).
Relevant Equations
moment of inertia of a solid sphere: I = 2/5mr^2
K = 1/2mv^2 + 1/2Iw^2
U = mgh
I'm not sure where the equation E_k=(gmR^2)/4h comes from & I also don't really know where to start either :(
 
Physics news on Phys.org
According to our rules, to receive help, you need to show some credible effort towards answering the question. How about telling us what you do know and how you would approach this problem?
Please read, understand and follow our homework guidelines, especially item 4, here
https://www.physicsforums.com/threads/homework-help-guidelines-for-students-and-helpers.686781/

Also, it would help if you posted the statement of the problem as was given to you. Note that you are saying that the kinetic energy of the ball is given at the moment of projection but it is not at all clear what you are asked to find.
 
foreverlostinclass said:
The kinetic energy of the ball when it lands is given by the equation: E_k=(gmR^2)/4h, where g is the gravitational acceleration constant (9.81 m/s^2), m is the mass of the ball & h is the height from the ground to the bottom of the ramp.
Edit: Actually it's the kinetic energy when the ball is projected, not when it lands (sorry, misread the description).
Relevant Equations: moment of inertia of a solid sphere: I = 2/5mr^2
K = 1/2mv^2 + 1/2Iw^2
U = mgh
It is still not quite true. That formula ignores the rotational KE.
To deduce it, you have to assume the bottom of the ramp is horizontal.
Find
  • how long it would take to land, in terms of g and h
  • the relationship between that time, R, and the velocity with which it leaves the ramp.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 60 ·
3
Replies
60
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 63 ·
3
Replies
63
Views
6K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 10 ·
Replies
10
Views
5K