Deriving the structure constants of the SO(n) group

spaghetti3451
Messages
1,311
Reaction score
31
The commutation relations for the ##\mathfrak{so(n)}## Lie algebra is:##([A_{ij},A_{mn}])_{st} = -i(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j})_{st}##.where the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra are given by:##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

where ##a,b## label the number of the generator, and ##s,t## label the matrix element.I would like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra such that##[A_{ij},A_{mn}] = if_{ij,mn}^{ks}A_{ks}##are given by##f_{ij,mn}^{ks} = \delta_{k[j}\delta_{i][m}\delta_{n]s}##.Can someone help me out with this?
 
Physics news on Phys.org
failexam said:
##([A_{ij},A_{mn}])_{st} = -i(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j})_{st}##.
...
I would like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra such that##[A_{ij},A_{mn}] = if_{ij,mn}^{ks}A_{ks}##

From these equations, you have
$$f_{ij,mn}^{ks}A_{ks}=-(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j}) .$$
You can expand the RHS using identities like ##A_{jm} = \delta_{jk}\delta_{ms} A_{ks}## to derive the form of the structure constants.
 
Thanks! I got it!
 
It is easy to show that the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra given by

##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

reduce to the three generators ##A_{23},A_{31}, A_{12}## of the ##so(3)## Lie algebra.

The generators ##A_{ii}## for ##i=1,2,3## are redundant as they all equal to ##0##.
The generators ##A_{32},A_{13},A_{21}## are redundant as ##A_{32}=-A_{23},A_{13}=-A_{31},A_{21}=-A_{12}##.
The redundancy comes about because the matrices ##A_{ab}## themselves form the matrix elements of an antisymmetric matrix element.

Am I correct?
 
failexam said:
It is easy to show that the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra given by

##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

reduce to the three generators ##A_{23},A_{31}, A_{12}## of the ##so(3)## Lie algebra.

The generators ##A_{ii}## for ##i=1,2,3## are redundant as they all equal to ##0##.
The generators ##A_{32},A_{13},A_{21}## are redundant as ##A_{32}=-A_{23},A_{13}=-A_{31},A_{21}=-A_{12}##.
The redundancy comes about because the matrices ##A_{ab}## themselves form the matrix elements of an antisymmetric matrix element.

Am I correct?

Yes, the generators are antisymmetric in both pairs of indices:
$$(A_{ab})_{st} = - (A_{ba})_{st} = -(A_{ab})_{ts} .$$
 
I would also like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra reduce to the structure constants ##\epsilon_{ij}^{k}## of the ##so(3)## Lie algebra defined as follows:

##[X_{p},X_{q}]=i\epsilon_{pqr}X_{r}##

where ##X_{1}=A_{23},X_{2}=A_{31},X_{3}=A_{12}##.

Now, however must I try, I cannot show that ##f_{ij,mn}^{ks} = \delta_{k[j}\delta_{i][m}\delta_{n]s}## reduces to ##\epsilon_{pqr}## under the above identification ##p=ij,q=mn,r=ks##.

To illustrate,

##f_{ij,mn}^{ks}##
##= \delta_{k[j}\delta_{i][m}\delta_{n]s}##
##= \delta_{kj}\delta_{i[m}\delta_{n]s}-\delta_{ki}\delta_{j[m}\delta_{n]s}##
##= \delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms}##

Now, ##\epsilon_{123} = 1##, but ##f_{23,31}^{12} \neq 1##.

What exactly is the problem?
 
Last edited:
For ##SO(3)## we can use the invariant ##\epsilon_{ijk}## to project a pair of indices onto a single index. So the expression that you should compute is ##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##.
 
All right. Let me first perform the computation.

##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##
##= \epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} (\delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} - {\epsilon_b}^{nk}{\epsilon_c}^{sn} -{\epsilon_b}^{km}{\epsilon_c}^{ms}+{\epsilon_b}^{kn}{\epsilon_c}^{sn})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} + {\epsilon_b}^{nk}{\epsilon_c}^{ns} +{\epsilon_b}^{mk}{\epsilon_c}^{ms}+{\epsilon_b}^{nk}{\epsilon_c}^{ns})##
##= 4 \epsilon_{aks}{\epsilon_b}^{mk}{\epsilon_c}^{ms}##
##= 4 \epsilon_{aks}{\epsilon_m}^{kb}{\epsilon_m}^{sc}##
##= 4 \epsilon_{aks}(\delta^{ks}\delta^{bc}-\delta^{kc}\delta^{bs})##
##= -4 \epsilon_{acb}##
##= 4 \epsilon_{abc}##

Is there some way to get rid of the factor of 4 in front of ##\epsilon_{abc}##?
 
Last edited:
failexam said:
All right. Let me first perform the computation.

##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##
##= \epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} (\delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} - {\epsilon_b}^{nk}{\epsilon_c}^{sn} -{\epsilon_b}^{km}{\epsilon_c}^{ms}+{\epsilon_b}^{kn}{\epsilon_c}^{sn})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} + {\epsilon_b}^{nk}{\epsilon_c}^{ns} +{\epsilon_b}^{mk}{\epsilon_c}^{ms}+{\epsilon_b}^{nk}{\epsilon_c}^{ns})##
##= 4 \epsilon_{aks}{\epsilon_b}^{mk}{\epsilon_c}^{ms}##
##= 4 \epsilon_{aks}{\epsilon_m}^{kb}{\epsilon_m}^{sc}##
##= 4 \epsilon_{aks}(\delta^{ks}\delta^{bc}-\delta^{kc}\delta^{bs})##
##= -4 \epsilon_{acb}##
##= 4 \epsilon_{abc}##

Is there some way to get rid of the factor of 4 in front of ##\epsilon_{abc}##?

I get the same factor of 4. It turned out that I forgot some factors of 2 in the mapping I suggested. Let us define ##A_{ij} =\gamma \epsilon_{ijp} X_p## for some constant ##\gamma##. Then we can multiply this again by ##\epsilon## to show that ##X_p = (1/(2\gamma)) \epsilon_{pij} A_{ij}##. Now consider
$$ [X_p, X_q] = \frac{1}{4\gamma^2} \epsilon_{pij} \epsilon_{qmn} [A_{ij},A_{mn}]
= \frac{1}{4\gamma^2} \epsilon_{pij} \epsilon_{qmn} f^{ks}_{ij,mn} \gamma \epsilon_{ksr} X_r.$$
We find precisely the factor of 4 that we needed and can therefore set ##\gamma=1##.
 
  • #10
Thank you so much! I get it now!
 
Back
Top