Deriving the structure constants of the SO(n) group

Click For Summary
The discussion focuses on deriving the structure constants of the SO(n) group from the commutation relations of its Lie algebra, specifically the antisymmetric generators. The relation between the generators and the structure constants is established, leading to the conclusion that the structure constants can be expressed in terms of the Kronecker delta. The conversation also addresses the redundancy of certain generators in the SO(3) case, confirming that some generators are equivalent due to their antisymmetric nature. The participants work through the mathematical details to show how the structure constants relate to those of the SO(3) algebra, ultimately resolving the factor discrepancies encountered during the derivation. The discussion concludes with a successful resolution of the initial query regarding the structure constants.
spaghetti3451
Messages
1,311
Reaction score
31
The commutation relations for the ##\mathfrak{so(n)}## Lie algebra is:##([A_{ij},A_{mn}])_{st} = -i(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j})_{st}##.where the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra are given by:##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

where ##a,b## label the number of the generator, and ##s,t## label the matrix element.I would like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra such that##[A_{ij},A_{mn}] = if_{ij,mn}^{ks}A_{ks}##are given by##f_{ij,mn}^{ks} = \delta_{k[j}\delta_{i][m}\delta_{n]s}##.Can someone help me out with this?
 
Physics news on Phys.org
failexam said:
##([A_{ij},A_{mn}])_{st} = -i(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j})_{st}##.
...
I would like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra such that##[A_{ij},A_{mn}] = if_{ij,mn}^{ks}A_{ks}##

From these equations, you have
$$f_{ij,mn}^{ks}A_{ks}=-(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j}) .$$
You can expand the RHS using identities like ##A_{jm} = \delta_{jk}\delta_{ms} A_{ks}## to derive the form of the structure constants.
 
Thanks! I got it!
 
It is easy to show that the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra given by

##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

reduce to the three generators ##A_{23},A_{31}, A_{12}## of the ##so(3)## Lie algebra.

The generators ##A_{ii}## for ##i=1,2,3## are redundant as they all equal to ##0##.
The generators ##A_{32},A_{13},A_{21}## are redundant as ##A_{32}=-A_{23},A_{13}=-A_{31},A_{21}=-A_{12}##.
The redundancy comes about because the matrices ##A_{ab}## themselves form the matrix elements of an antisymmetric matrix element.

Am I correct?
 
failexam said:
It is easy to show that the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra given by

##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

reduce to the three generators ##A_{23},A_{31}, A_{12}## of the ##so(3)## Lie algebra.

The generators ##A_{ii}## for ##i=1,2,3## are redundant as they all equal to ##0##.
The generators ##A_{32},A_{13},A_{21}## are redundant as ##A_{32}=-A_{23},A_{13}=-A_{31},A_{21}=-A_{12}##.
The redundancy comes about because the matrices ##A_{ab}## themselves form the matrix elements of an antisymmetric matrix element.

Am I correct?

Yes, the generators are antisymmetric in both pairs of indices:
$$(A_{ab})_{st} = - (A_{ba})_{st} = -(A_{ab})_{ts} .$$
 
I would also like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra reduce to the structure constants ##\epsilon_{ij}^{k}## of the ##so(3)## Lie algebra defined as follows:

##[X_{p},X_{q}]=i\epsilon_{pqr}X_{r}##

where ##X_{1}=A_{23},X_{2}=A_{31},X_{3}=A_{12}##.

Now, however must I try, I cannot show that ##f_{ij,mn}^{ks} = \delta_{k[j}\delta_{i][m}\delta_{n]s}## reduces to ##\epsilon_{pqr}## under the above identification ##p=ij,q=mn,r=ks##.

To illustrate,

##f_{ij,mn}^{ks}##
##= \delta_{k[j}\delta_{i][m}\delta_{n]s}##
##= \delta_{kj}\delta_{i[m}\delta_{n]s}-\delta_{ki}\delta_{j[m}\delta_{n]s}##
##= \delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms}##

Now, ##\epsilon_{123} = 1##, but ##f_{23,31}^{12} \neq 1##.

What exactly is the problem?
 
Last edited:
For ##SO(3)## we can use the invariant ##\epsilon_{ijk}## to project a pair of indices onto a single index. So the expression that you should compute is ##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##.
 
All right. Let me first perform the computation.

##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##
##= \epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} (\delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} - {\epsilon_b}^{nk}{\epsilon_c}^{sn} -{\epsilon_b}^{km}{\epsilon_c}^{ms}+{\epsilon_b}^{kn}{\epsilon_c}^{sn})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} + {\epsilon_b}^{nk}{\epsilon_c}^{ns} +{\epsilon_b}^{mk}{\epsilon_c}^{ms}+{\epsilon_b}^{nk}{\epsilon_c}^{ns})##
##= 4 \epsilon_{aks}{\epsilon_b}^{mk}{\epsilon_c}^{ms}##
##= 4 \epsilon_{aks}{\epsilon_m}^{kb}{\epsilon_m}^{sc}##
##= 4 \epsilon_{aks}(\delta^{ks}\delta^{bc}-\delta^{kc}\delta^{bs})##
##= -4 \epsilon_{acb}##
##= 4 \epsilon_{abc}##

Is there some way to get rid of the factor of 4 in front of ##\epsilon_{abc}##?
 
Last edited:
failexam said:
All right. Let me first perform the computation.

##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##
##= \epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} (\delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} - {\epsilon_b}^{nk}{\epsilon_c}^{sn} -{\epsilon_b}^{km}{\epsilon_c}^{ms}+{\epsilon_b}^{kn}{\epsilon_c}^{sn})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} + {\epsilon_b}^{nk}{\epsilon_c}^{ns} +{\epsilon_b}^{mk}{\epsilon_c}^{ms}+{\epsilon_b}^{nk}{\epsilon_c}^{ns})##
##= 4 \epsilon_{aks}{\epsilon_b}^{mk}{\epsilon_c}^{ms}##
##= 4 \epsilon_{aks}{\epsilon_m}^{kb}{\epsilon_m}^{sc}##
##= 4 \epsilon_{aks}(\delta^{ks}\delta^{bc}-\delta^{kc}\delta^{bs})##
##= -4 \epsilon_{acb}##
##= 4 \epsilon_{abc}##

Is there some way to get rid of the factor of 4 in front of ##\epsilon_{abc}##?

I get the same factor of 4. It turned out that I forgot some factors of 2 in the mapping I suggested. Let us define ##A_{ij} =\gamma \epsilon_{ijp} X_p## for some constant ##\gamma##. Then we can multiply this again by ##\epsilon## to show that ##X_p = (1/(2\gamma)) \epsilon_{pij} A_{ij}##. Now consider
$$ [X_p, X_q] = \frac{1}{4\gamma^2} \epsilon_{pij} \epsilon_{qmn} [A_{ij},A_{mn}]
= \frac{1}{4\gamma^2} \epsilon_{pij} \epsilon_{qmn} f^{ks}_{ij,mn} \gamma \epsilon_{ksr} X_r.$$
We find precisely the factor of 4 that we needed and can therefore set ##\gamma=1##.
 
  • #10
Thank you so much! I get it now!
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
872
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K