MHB Deriving Y-Component of Uniform Electric Rod | E=-▽V

Quintessential
Messages
7
Reaction score
0
This is essentially the problem.

NDL0hSh.png


And this is what I did.

Realizing the following:

E = -▽V

I simply took the derivative in regards to the vertical component, in this case "a".

So:

-dV/da [the above formulae]

And I got the following:

Κλl/(a sqrt(l^2+a^2))

Does that seem about right?

**Sorry, I have no idea on how to operate the sexy mathjax characters.
 
Mathematics news on Phys.org
Quintessential said:
This is essentially the problem.

NDL0hSh.png


And this is what I did.

Realizing the following:

E = -▽V

I simply took the derivative in regards to the vertical component, in this case "a".

So:

-dV/da [the above formulae]

And I got the following:

Κλl/(a sqrt(l^2+a^2))

Does that seem about right?

**Sorry, I have no idea on how to operate the sexy mathjax characters.

Welcome to MHB, Quintessential! :)

Yep. That seems about right, although your constant looks a bit weird.

Anyway, since they are asking for the y component of the electric field at point P, I would write:

$$E_y = \frac{k_\ell Q}{y \sqrt{\ell^2 + y^2}}$$

(If you click Reply With Quote, you can see what the mathjax looks like. ;))
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top