Details regarding the high temperature limit of the partition function

EE18
Messages
112
Reaction score
13
Homework Statement
Consider a quantum system where the energy of the ##n##th level, ##\epsilon_n \geq 0##, is some polynomial function of ##n## of degree ##q## (##q > 0##), and the degeneracy of this level, ##g_n##, is some other polynomial function of n of degree ##r## (##r \geq 0##). In this limit one may approximate the sum in the partition function by an integral. Furthermore, the asymptotic behaviour is dominated by the highest-order terms in the polynomials. Show this.
Relevant Equations
See work below.
My main question here is about how we actually justify, hopefully fairly rigorously, the steps leading towards converting the sum to an integral.

My work is below:
If we consider the canonical ensemble then, after tracing over the corresponding exponential we get:
$$Z = \sum_{n=0}^\infty g_ne^{-\beta \epsilon_n}$$
where we have assumed, per the question, that we have a quantum system where the eigenenergies are indexed by some quantum number ##n## which takes on nonnegative integer values. Further, we are told to assume that the energies ##\epsilon_n## are polynomials in ##n## of degree ##q## and the degeneracies ##g_n## are polynomials in ##n## of degree ##r##:
$$\epsilon_n = a_qn^q+...+a_0$$
and
$$g = b_rn^r+...+b_0.$$
Now define, on looking at the arguments of the exponentials in ##Z## [Question, why does this work for ##n=0## case? Do we have to separate that from the rest of the integral if we are being rigorous? In that case, should the integral below start at 1?],
$$x_n := ({\beta\epsilon_n})^{1/q} = (\beta a_qn^q)^{1/q}\left(1+\frac{1}{q}(a_{q-1}n^{-1}+...+a_0n^{-q}) + ...\right)$$
where in the last step we've used a binomial expansion [Why is this expansion justified in this limit? I see why it works for large ##n##, but shouldn't this not be good for small ##n##? E.g. ##n = 1##?. For large ##n## this becomes
$$x_n \approx (\beta a_qn^q)^{1/q} \sim \beta^{1/q}n$$
where ##\sim## denotes an asymptotic scaling relation (i.e. the proportionality is independent of $n$).

From our work above, it's apparent that (on multiplying and dividing terms by ##\beta^{1/r}## and using ##g_n \sim n^r## for large ##n##) that (NB that ##x_n^q## means ##(x_n)^q## where ##x_n## is related to ##n## as above)
$$Z = \sum_{n=0}^\infty g_ne^{-\beta \epsilon_n} \sim \sum_{n=0}^\infty \frac{\beta^{r/q}}{\beta^{r/q}}n^re^{-x^q_n} = \frac{1}{\beta^{r/q}}\sum_{n=0}^\infty x_n^re^{-x^q_n}.$$
We now move to approximate this sum by an integral. Now define the increments
$$\Delta x := x_{n+1} - x_n = \beta^{1/q}.$$
For ##\beta## very small these becomes very small, so that the Riemann sum becomes well-approximated by the corresponding integral:
$$Z \sim \frac{1}{\beta^{r/q}}\sum_{n=0}^\infty x_n^re^{-x^q_n} = \frac{1}{\beta^{r/q}}\sum_{n=0}^\infty \frac{\Delta x}{\beta^{1/q}} x_n^re^{-x^q_n} \approx {\beta^{-\frac{r+1}{q}}}\int_{0}^\infty dx \, x^re^{-x^q} \sim \beta^{-s}$$
for ##s = \frac{r+1}{q}## and where in the last step we've noted that the integral is just some number (constant with respect to temperature or $\beta$).Any help with justifying the bolded steps would be much appreciated!
 
Physics news on Phys.org
Just bumping this if possible
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top