MHB Determine a matrix C such that T = CA has echelon form

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $$A=\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}\in \mathbb{R}^{3\times 3}$$

I want to determine a matrix $C\in GL_3(\mathbb{R})$ such that $T:=C\cdot A$ has echelon form. Performing an elementary row operation is equivalent to multiplying an invertible matrix, right? (Wondering)

So do we apply the Gauss algorithm at $[A \ \mid \ I_3]$, and bring $A$ into echelon form, then the $3\times 3$-matrix that we get on the right side is the matrix $C$ that we are looking for, i.e. we get $[T \ \mid \ C]$ ?

I mean the following:
\begin{equation*}\begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 6 & 0 & 1 & 0\\ 7 & 8 & 9 & 0 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -3 & -6 & -4 & 1 & 0\\ 0 & -6 & -12 & -7 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -3 & -6 & -4 & 1 & 0\\ 0 & 0 & 0 & 1 & -2 & 1\end{pmatrix}\end{equation*}
(Wondering)

At the proposed solution they continue the Gauss algorithm and they get the following:
\begin{equation*}\begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 6 & 0 & 1 & 0\\ 7 & 8 & 9 & 0 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -3 & -6 & -4 & 1 & 0\\ 0 & -6 & -12 & -7 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & \frac{4}{3} & -\frac{1}{3} & 0\\ 0 & 0 & 0 & 1 & -2 & 1\end{pmatrix} \longrightarrow \begin{pmatrix}1 & 0 & -1 & -\frac{5}{3} & \frac{2}{3} & 0 \\ 0 & 1 & 2 & \frac{4}{3} & -\frac{1}{3} & 0\\ 0 & 0 & 0 & 1 & -2 & 1\end{pmatrix}\end{equation*} Why do they change also the first two rows although we already have the echelon form? Would it be wrong to stop the algrithm as I did it? I mean is it wrong to consider the matrices \begin{equation*}T=\begin{pmatrix}1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix} \ \text{ and } \ C=\begin{pmatrix}1 & 0 & 0 \\ -4 & 1 & 0 \\ 1 & -2 & 1\end{pmatrix}\end{equation*} ? (Wondering)
 
Physics news on Phys.org
Hey mathmari!

There's a difference between Row Echelon Form (REF) and Reduced Row Echelon Form (RREF).
RREF means that:
  • It is in row echelon form.
  • Every leading coefficient is 1.
  • The leading coefficient is the only nonzero entry in its column.
(Thinking)
 
I like Serena said:
There's a difference between Row Echelon Form (REF) and Reduced Row Echelon Form (RREF).
RREF means that:
  • It is in row echelon form.
  • Every leading coefficient is 1.
  • The leading coefficient is the only nonzero entry in its column.
(Thinking)

At the exercise statement it is asked for Row Echelon Form:

View attachment 8386

So is the proposed solution for the case of Reduced Row Echelon Form and in the case of Row Echelon Form we could also do what I did? (Wondering)
 

Attachments

  • treppenform.JPG
    treppenform.JPG
    11.9 KB · Views: 109
mathmari said:
At the exercise statement it is asked for Row Echelon Form:



So is the proposed solution for the case of Reduced Row Echelon Form and in the case of Row Echelon Form we could also do what I did? (Wondering)

Yep.
It looks as if the proposed solution went 'over the top'. (Emo)
 
I like Serena said:
Yep.
It looks as if the proposed solution went 'over the top'. (Emo)

Ok! Thank you! (Yes)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top