- #1

- 179

- 6

- Homework Statement
- The equations of state of a gas are ##P=\frac{U}{V}## and ##T=3B(U²/NV)^{1/3}##. Determine ##\alpha## and ##\mu##.

- Relevant Equations
- ##U##: internal energy; ##T##: temperature; ##\mu##: Joule-Kelvin coefficient; ##B##: positive constant; ##V##: volume; ##N##: number of moles; ##\alpha##: coefficient of thermal expansion; ##P##: pressure; ##c_P##: heat capacity at constant pressure.

Hi

##\mu=\frac{\alpha TV–V}{N c_P}##. So, firstly, I have to calculate ##\alpha## and ##c_P##. So ##\alpha=\frac{1}{V} \frac{\partial V}{\partial T}## at constant ##P##. I can write ##U=PV##, then I replace it in the equation of ##T##, solve for ##V## and then I differentiate with respect to ##T##.

Then, ##c_P=\frac{T}{N} \frac{\partial S}{\partial T}## at constant ##P##. Do I have to find the fundamental equation for ##S## using Euler and Gibbs-Duhem relations, or is there an easier way?

##\mu=\frac{\alpha TV–V}{N c_P}##. So, firstly, I have to calculate ##\alpha## and ##c_P##. So ##\alpha=\frac{1}{V} \frac{\partial V}{\partial T}## at constant ##P##. I can write ##U=PV##, then I replace it in the equation of ##T##, solve for ##V## and then I differentiate with respect to ##T##.

Then, ##c_P=\frac{T}{N} \frac{\partial S}{\partial T}## at constant ##P##. Do I have to find the fundamental equation for ##S## using Euler and Gibbs-Duhem relations, or is there an easier way?