Determine the value of r1 and E for given wavefunction of hydrogen

Click For Summary

Homework Help Overview

The discussion revolves around determining the values of \( r_1 \) and \( E \) for a given wavefunction of the hydrogen atom, specifically in the context of the Schrödinger equation. The subject area is quantum mechanics, focusing on the hydrogen atom's energy levels and wavefunctions.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants explore the implications of substituting a wavefunction into the Schrödinger equation and the resulting equations that arise. There is discussion about how to eliminate the variable \( r \) from the equations to isolate \( r_1 \) and \( E \). Some participants question whether \( E \) can be assumed known and discuss the conditions under which the equation must hold for any value of \( r \.

Discussion Status

Participants have provided insights into how to approach the problem, including suggestions for determining \( r_1 \) such that the \( r \) dependence cancels out. There is acknowledgment of the relationship between \( r_1 \) and the Bohr radius, and some participants indicate that obtaining \( E \) becomes straightforward once \( r_1 \) is established.

Contextual Notes

There is a mention of the hydrogen atom being in the ground state, which implies specific values for \( E \). The discussion also reflects on the need to derive expressions for \( r_1 \) and \( E \) in terms of fundamental constants, without assuming \( E \) as a known quantity initially.

dark_matter_is_neat
Messages
34
Reaction score
1
Homework Statement
An electron in the hydrogen atom in the ground state is described by the wavefunction: ##\Psi(x,y,z) = Ae^{-\frac{r}{r_{1}}}##
where ##r = \sqrt{x^{2}+y^{2}+z^{2}}## and A and ##r_{1}## are constants.
Use the Schrodinger equation to find ##r_{1}## and the energy eigenvalue E in terms of the electron mass and charge.
Relevant Equations
##-\frac{\hbar^{2}}{2m} \nabla^{2} \Psi + V \Psi = E \Psi##
In this case, ignoring derivatives that go to zero, (denoting the charge of the electron as q to avoid confusion) ##-\frac{\hbar^{2}}{2m} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} (rAe^{-\frac{r}{r_{1}}}) - \frac{q^{2}}{4 \pi \epsilon_{0} r} Ae^{-\frac{r}{r_{1}}} = E A e^{-\frac{r}{r_{1}}}##.
So going through the derivatives:
##(\frac{\hbar^{2}}{mrr_{1}} - \frac{\hbar^{2}}{2mr_{1}^{2}} - \frac{q^{2}}{4 \pi \epsilon_{0} r}) A e^{-\frac{r}{r_{1}}} = E A e^{-\frac{r}{r_{1}}}##.
I can cancel ##A e^{-\frac{r}{r_{1}}}## on each side to get ##E = \frac{\hbar^{2}}{mrr_{1}} - \frac{\hbar^{2}}{2mr_{1}^{2}} - \frac{q^{2}}{4 \pi \epsilon_{0} r}##, which isn't good since it contains two unknowns ##r_{1}## and E, and it contains r. I'm not sure how to get two separate equations for ##r_{1}## and E from just the Schrödinger equation and I'm not sure how to get rid of r, since neither expression should depend r.
 
Last edited:
Physics news on Phys.org
E is assumed known. The problem tells you that the hydrogen atom is in the ground state. So what's E for the hydrogen ground state?

As far as getting rid of ##r## is concerned, don't forget that the equation you get, after you substitute the solution into the Schrödinger equation, must hold for any value of ##r##.
 
  • Like
Likes   Reactions: dark_matter_is_neat
dark_matter_is_neat said:
I can cancel ##A e^{-\frac{r}{r_{1}}}## on each side to get ##E = \frac{\hbar^{2}}{mrr_{1}} - \frac{\hbar^{2}}{2mr_{1}^{2}} - \frac{q^{2}}{4 \pi \epsilon_{0} r}##, which isn't good since it contains two unknowns ##r_{1}## and E, and it contains r. I'm not sure how to get two separate equations for ##r_{1}## and E from just the Schrödinger equation and I'm not sure how to get rid of r, since neither expression should depend r.
You determine ##r_1## so that the ##r## dependence disappears. In other words, what value does ##r_1## have to take so that the terms with the ##r## dependence cancel out?
 
  • Like
Likes   Reactions: dark_matter_is_neat
kuruman said:
E is assumed known. The problem tells you that the hydrogen atom is in the ground state. So what's E for the hydrogen ground state?

As far as getting rid of ##r## is concerned, don't forget that the equation you get, after you substitute the solution into the Schrödinger equation, must hold for any value of ##r##.
The problem asks for you to solve for the energy eigenvalue in terms of the electron mass and charge, so I don't think it is supposed to be assumed as being known.

E is -13.6 eV = ##-\frac{me^{4}}{2 \hbar^{2} (4 \pi \epsilon_{0})^{2}}## for the hydrogen atom ground state, so I could put in ##r_{1}## for r and then solve for it in terms of E.
 
dark_matter_is_neat said:
The problem asks for you to solve for the energy eigenvalue in terms of the electron mass and charge, so I don't think it is supposed to be assumed as being known.

E is -13.6 eV = ##-\frac{me^{4}}{2 \hbar^{2}}## for the hydrogen atom ground state, so I could put in ##r_{1}## for r and then solve for it in terms of E.
Yes, you are correct. You can get both the energy and ##r_1## following @vela's suggestion, or mine. To put it simply, if you substitute the wavefunction into the Schrödinger equation, you can move everything to the left side and bring it to the form $$A +f(r)=0$$ where ##A## is some constant and ##f(r)## is a function of ##r##. This must be true for any value of ##r## because that's what "solution" means. What does that imply for ##A## and ##f(r)##?
 
  • Like
Likes   Reactions: dark_matter_is_neat
Okay, so solving for ##r_{1}## so that the r dependence cancels, ##r_{1} = \frac{4 \pi \epsilon_{0} \hbar^{2}}{me^{2}}## which is as expected, is the Bohr radius.

With an expression for r_{1}, getting the energy is trivial, since I can just substitute in ##r_{1}##. So ##E = -\frac{me^{4}}{2(4 \pi \epsilon_{0})^{2} \hbar^{2}}## as required.
 
  • Like
Likes   Reactions: vela

Similar threads

Replies
1
Views
2K
Replies
29
Views
2K
  • · Replies 1 ·
Replies
1
Views
852
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
6
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K