Determine the value of r1 and E for given wavefunction of hydrogen

AI Thread Summary
The discussion focuses on determining the values of r1 and E for the hydrogen atom's wavefunction using the Schrödinger equation. Participants clarify that to eliminate the r dependence in the equation, r1 must be set to a specific value, which is identified as the Bohr radius. The energy eigenvalue for the hydrogen ground state is established as E = -13.6 eV. By substituting r1 into the energy expression, the final energy value is confirmed as E = -me^4/(2(4πε0)²ħ²). The discussion emphasizes the importance of ensuring the equation holds for any value of r.
dark_matter_is_neat
Messages
34
Reaction score
1
Homework Statement
An electron in the hydrogen atom in the ground state is described by the wavefunction: ##\Psi(x,y,z) = Ae^{-\frac{r}{r_{1}}}##
where ##r = \sqrt{x^{2}+y^{2}+z^{2}}## and A and ##r_{1}## are constants.
Use the Schrodinger equation to find ##r_{1}## and the energy eigenvalue E in terms of the electron mass and charge.
Relevant Equations
##-\frac{\hbar^{2}}{2m} \nabla^{2} \Psi + V \Psi = E \Psi##
In this case, ignoring derivatives that go to zero, (denoting the charge of the electron as q to avoid confusion) ##-\frac{\hbar^{2}}{2m} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} (rAe^{-\frac{r}{r_{1}}}) - \frac{q^{2}}{4 \pi \epsilon_{0} r} Ae^{-\frac{r}{r_{1}}} = E A e^{-\frac{r}{r_{1}}}##.
So going through the derivatives:
##(\frac{\hbar^{2}}{mrr_{1}} - \frac{\hbar^{2}}{2mr_{1}^{2}} - \frac{q^{2}}{4 \pi \epsilon_{0} r}) A e^{-\frac{r}{r_{1}}} = E A e^{-\frac{r}{r_{1}}}##.
I can cancel ##A e^{-\frac{r}{r_{1}}}## on each side to get ##E = \frac{\hbar^{2}}{mrr_{1}} - \frac{\hbar^{2}}{2mr_{1}^{2}} - \frac{q^{2}}{4 \pi \epsilon_{0} r}##, which isn't good since it contains two unknowns ##r_{1}## and E, and it contains r. I'm not sure how to get two separate equations for ##r_{1}## and E from just the Schrodinger equation and I'm not sure how to get rid of r, since neither expression should depend r.
 
Last edited:
Physics news on Phys.org
E is assumed known. The problem tells you that the hydrogen atom is in the ground state. So what's E for the hydrogen ground state?

As far as getting rid of ##r## is concerned, don't forget that the equation you get, after you substitute the solution into the Schrodinger equation, must hold for any value of ##r##.
 
  • Like
Likes dark_matter_is_neat
dark_matter_is_neat said:
I can cancel ##A e^{-\frac{r}{r_{1}}}## on each side to get ##E = \frac{\hbar^{2}}{mrr_{1}} - \frac{\hbar^{2}}{2mr_{1}^{2}} - \frac{q^{2}}{4 \pi \epsilon_{0} r}##, which isn't good since it contains two unknowns ##r_{1}## and E, and it contains r. I'm not sure how to get two separate equations for ##r_{1}## and E from just the Schrodinger equation and I'm not sure how to get rid of r, since neither expression should depend r.
You determine ##r_1## so that the ##r## dependence disappears. In other words, what value does ##r_1## have to take so that the terms with the ##r## dependence cancel out?
 
  • Like
Likes dark_matter_is_neat
kuruman said:
E is assumed known. The problem tells you that the hydrogen atom is in the ground state. So what's E for the hydrogen ground state?

As far as getting rid of ##r## is concerned, don't forget that the equation you get, after you substitute the solution into the Schrodinger equation, must hold for any value of ##r##.
The problem asks for you to solve for the energy eigenvalue in terms of the electron mass and charge, so I don't think it is supposed to be assumed as being known.

E is -13.6 eV = ##-\frac{me^{4}}{2 \hbar^{2} (4 \pi \epsilon_{0})^{2}}## for the hydrogen atom ground state, so I could put in ##r_{1}## for r and then solve for it in terms of E.
 
dark_matter_is_neat said:
The problem asks for you to solve for the energy eigenvalue in terms of the electron mass and charge, so I don't think it is supposed to be assumed as being known.

E is -13.6 eV = ##-\frac{me^{4}}{2 \hbar^{2}}## for the hydrogen atom ground state, so I could put in ##r_{1}## for r and then solve for it in terms of E.
Yes, you are correct. You can get both the energy and ##r_1## following @vela's suggestion, or mine. To put it simply, if you substitute the wavefunction into the Schrodinger equation, you can move everything to the left side and bring it to the form $$A +f(r)=0$$ where ##A## is some constant and ##f(r)## is a function of ##r##. This must be true for any value of ##r## because that's what "solution" means. What does that imply for ##A## and ##f(r)##?
 
  • Like
Likes dark_matter_is_neat
Okay, so solving for ##r_{1}## so that the r dependence cancels, ##r_{1} = \frac{4 \pi \epsilon_{0} \hbar^{2}}{me^{2}}## which is as expected, is the Bohr radius.

With an expression for r_{1}, getting the energy is trivial, since I can just substitute in ##r_{1}##. So ##E = -\frac{me^{4}}{2(4 \pi \epsilon_{0})^{2} \hbar^{2}}## as required.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top