Determine the value of r1 and E for given wavefunction of hydrogen

dark_matter_is_neat
Messages
34
Reaction score
1
Homework Statement
An electron in the hydrogen atom in the ground state is described by the wavefunction: ##\Psi(x,y,z) = Ae^{-\frac{r}{r_{1}}}##
where ##r = \sqrt{x^{2}+y^{2}+z^{2}}## and A and ##r_{1}## are constants.
Use the Schrodinger equation to find ##r_{1}## and the energy eigenvalue E in terms of the electron mass and charge.
Relevant Equations
##-\frac{\hbar^{2}}{2m} \nabla^{2} \Psi + V \Psi = E \Psi##
In this case, ignoring derivatives that go to zero, (denoting the charge of the electron as q to avoid confusion) ##-\frac{\hbar^{2}}{2m} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} (rAe^{-\frac{r}{r_{1}}}) - \frac{q^{2}}{4 \pi \epsilon_{0} r} Ae^{-\frac{r}{r_{1}}} = E A e^{-\frac{r}{r_{1}}}##.
So going through the derivatives:
##(\frac{\hbar^{2}}{mrr_{1}} - \frac{\hbar^{2}}{2mr_{1}^{2}} - \frac{q^{2}}{4 \pi \epsilon_{0} r}) A e^{-\frac{r}{r_{1}}} = E A e^{-\frac{r}{r_{1}}}##.
I can cancel ##A e^{-\frac{r}{r_{1}}}## on each side to get ##E = \frac{\hbar^{2}}{mrr_{1}} - \frac{\hbar^{2}}{2mr_{1}^{2}} - \frac{q^{2}}{4 \pi \epsilon_{0} r}##, which isn't good since it contains two unknowns ##r_{1}## and E, and it contains r. I'm not sure how to get two separate equations for ##r_{1}## and E from just the Schrodinger equation and I'm not sure how to get rid of r, since neither expression should depend r.
 
Last edited:
Physics news on Phys.org
E is assumed known. The problem tells you that the hydrogen atom is in the ground state. So what's E for the hydrogen ground state?

As far as getting rid of ##r## is concerned, don't forget that the equation you get, after you substitute the solution into the Schrodinger equation, must hold for any value of ##r##.
 
  • Like
Likes dark_matter_is_neat
dark_matter_is_neat said:
I can cancel ##A e^{-\frac{r}{r_{1}}}## on each side to get ##E = \frac{\hbar^{2}}{mrr_{1}} - \frac{\hbar^{2}}{2mr_{1}^{2}} - \frac{q^{2}}{4 \pi \epsilon_{0} r}##, which isn't good since it contains two unknowns ##r_{1}## and E, and it contains r. I'm not sure how to get two separate equations for ##r_{1}## and E from just the Schrodinger equation and I'm not sure how to get rid of r, since neither expression should depend r.
You determine ##r_1## so that the ##r## dependence disappears. In other words, what value does ##r_1## have to take so that the terms with the ##r## dependence cancel out?
 
  • Like
Likes dark_matter_is_neat
kuruman said:
E is assumed known. The problem tells you that the hydrogen atom is in the ground state. So what's E for the hydrogen ground state?

As far as getting rid of ##r## is concerned, don't forget that the equation you get, after you substitute the solution into the Schrodinger equation, must hold for any value of ##r##.
The problem asks for you to solve for the energy eigenvalue in terms of the electron mass and charge, so I don't think it is supposed to be assumed as being known.

E is -13.6 eV = ##-\frac{me^{4}}{2 \hbar^{2} (4 \pi \epsilon_{0})^{2}}## for the hydrogen atom ground state, so I could put in ##r_{1}## for r and then solve for it in terms of E.
 
dark_matter_is_neat said:
The problem asks for you to solve for the energy eigenvalue in terms of the electron mass and charge, so I don't think it is supposed to be assumed as being known.

E is -13.6 eV = ##-\frac{me^{4}}{2 \hbar^{2}}## for the hydrogen atom ground state, so I could put in ##r_{1}## for r and then solve for it in terms of E.
Yes, you are correct. You can get both the energy and ##r_1## following @vela's suggestion, or mine. To put it simply, if you substitute the wavefunction into the Schrodinger equation, you can move everything to the left side and bring it to the form $$A +f(r)=0$$ where ##A## is some constant and ##f(r)## is a function of ##r##. This must be true for any value of ##r## because that's what "solution" means. What does that imply for ##A## and ##f(r)##?
 
  • Like
Likes dark_matter_is_neat
Okay, so solving for ##r_{1}## so that the r dependence cancels, ##r_{1} = \frac{4 \pi \epsilon_{0} \hbar^{2}}{me^{2}}## which is as expected, is the Bohr radius.

With an expression for r_{1}, getting the energy is trivial, since I can just substitute in ##r_{1}##. So ##E = -\frac{me^{4}}{2(4 \pi \epsilon_{0})^{2} \hbar^{2}}## as required.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top