Determining Electric and Magnetic field given certain conditions

Click For Summary
The discussion focuses on determining electric and magnetic fields in wave equations using complex notation. The participant initially struggles with the correct representation of the electric field, realizing that the wave travels in the negative x-direction and must be sinusoidal. They clarify the relationship between the electric and magnetic fields, ensuring that they remain perpendicular. After some guidance, they correct their understanding of the equations and successfully derive the correct expressions for the fields. Ultimately, they express gratitude for the assistance in resolving their misunderstandings.
guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
Refer to attached image
Relevant Equations
comlplex wave equation,
Screen Shot 2022-10-06 at 11.06.55 AM.png

I am unsure of my solutions and am looking for some guidance. a.)The real part of the wave in complex notation can be written as ##\widetilde{A} = A^{i\delta}##. Writing the Complex Wave equation, we have ##\vec E(t) = \widetilde{A}e^{(-kz-\Omega t)} \hat x##. Therefore the real part is ##\vec E(t) =Ae^{(-kz-\Omega t+\delta)} \hat x##. The negative in front of kz indicates it is a left traveling wave.

b.) The unit vector of ##\hat B = \frac{(\hat x - 2\hat z)}{\sqrt{5}}##. I know that ##\hat E## must be perpendicular to ##\hat B##, so simply,
##\hat E = \frac{(\hat x + 2\hat z)}{\sqrt{5}}##

c.) I am not so sure about this problem. I know that ##\vec E = \widetilde{E}_oe^{i(ky-wt)}\hat x##
Griffiths states ##\widetilde{B}_o = \widetilde{E}_o/c## and ##v=c/n##.

So ##\vec B = \frac{c\widetilde{E}_o}{1.7}e^{i(ky-wt)}\hat z##
 
Physics news on Phys.org
guyvsdcsniper said:
a.)The real part of the wave in complex notation can be written as ##\widetilde{A} = A^{i\delta}##. Writing the Complex Wave equation, we have ##\vec E(t) = \widetilde{A}e^{(-kz-\Omega t)} \hat x##. Therefore the real part is ##\vec E(t) =Ae^{(-kz-\Omega t+\delta)} \hat x##. The negative in front of kz indicates it is a left traveling wave.
The problem statement said the wave travels in the ##-x## direction. Your answer isn't sinusoidal. It decays with time. What is ##\delta##?

b.) The unit vector of ##\hat B = \frac{(\hat x - 2\hat z)}{\sqrt{5}}##. I know that ##\hat E## must be perpendicular to ##\hat B##, so simply,
##\hat E = \frac{(\hat x + 2\hat z)}{\sqrt{5}}##
It doesn't look like ##\hat E \cdot \hat B=0##.
 
vela said:
The problem statement said the wave travels in the ##-x## direction. Your answer isn't sinusoidal. It decays with time. What is ##\delta##?
You're right. I should have ##\vec E(t) =Acos{(-kz-\Omega t+\delta)} \hat x##
##\delta## is the phase
So I need to make ##\hat x## be ##\hat - x## as well as account for it is a wave traveling left by the ##-kz## in the ##cos##?

I assumed the ##-kz## in the ##cos## accounted for the negative direction.
 
guyvsdcsniper said:
I assumed the ##-kz## in the ##cos## accounted for the negative direction.
In the ##-z## direction, not the ##-x## direction.
 
Hint: The wave travels in the negative ##x## direction and the ##\vec{B}##-field (sic!) is polarized in ##z##-direction. So the complex ansatz for ##\vec{B}## is (using the HEP physicists' convention concerning the signs in the exponential)
$$\vec{B}=A \vec{e}_z \exp(-\mathrm{i} \Omega t-\mathrm{i} k x), \quad \Omega,k>0.$$
Now just use the source-free Maxwell equations to get the dispersion relation ##\Omega=\Omega(k)## and the ##\vec{E}##-field!
 
I figured it out. I had a big misunderstanding on the equations I was using but took the time to read through my book and was able to come to the correct answer. Thanks all for the help!
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
19
Views
2K