Determining Electric and Magnetic field given certain conditions

Click For Summary
SUMMARY

This discussion focuses on determining electric and magnetic fields using complex wave equations. The complex wave equation for the electric field is expressed as ##\vec E(t) = \widetilde{A}e^{(-kz-\Omega t)} \hat x##, indicating a left-traveling wave. The unit vector for the magnetic field is given as ##\hat B = \frac{(\hat x - 2\hat z)}{\sqrt{5}}##, with the electric field ##\hat E## needing to be perpendicular to ##\hat B##. The final resolution involves correcting the direction of the wave and applying Maxwell's equations to derive the dispersion relation.

PREREQUISITES
  • Understanding of complex wave equations
  • Familiarity with Maxwell's equations
  • Knowledge of wave propagation and polarization
  • Basic concepts of electromagnetic fields
NEXT STEPS
  • Study the derivation of the dispersion relation from Maxwell's equations
  • Learn about the properties of electromagnetic waves in different media
  • Explore the implications of wave polarization in electromagnetic theory
  • Review complex notation in wave mechanics and its applications
USEFUL FOR

Students and professionals in physics, particularly those specializing in electromagnetism, wave mechanics, and anyone involved in the analysis of electric and magnetic fields in various contexts.

guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
Refer to attached image
Relevant Equations
comlplex wave equation,
Screen Shot 2022-10-06 at 11.06.55 AM.png

I am unsure of my solutions and am looking for some guidance. a.)The real part of the wave in complex notation can be written as ##\widetilde{A} = A^{i\delta}##. Writing the Complex Wave equation, we have ##\vec E(t) = \widetilde{A}e^{(-kz-\Omega t)} \hat x##. Therefore the real part is ##\vec E(t) =Ae^{(-kz-\Omega t+\delta)} \hat x##. The negative in front of kz indicates it is a left traveling wave.

b.) The unit vector of ##\hat B = \frac{(\hat x - 2\hat z)}{\sqrt{5}}##. I know that ##\hat E## must be perpendicular to ##\hat B##, so simply,
##\hat E = \frac{(\hat x + 2\hat z)}{\sqrt{5}}##

c.) I am not so sure about this problem. I know that ##\vec E = \widetilde{E}_oe^{i(ky-wt)}\hat x##
Griffiths states ##\widetilde{B}_o = \widetilde{E}_o/c## and ##v=c/n##.

So ##\vec B = \frac{c\widetilde{E}_o}{1.7}e^{i(ky-wt)}\hat z##
 
Physics news on Phys.org
guyvsdcsniper said:
a.)The real part of the wave in complex notation can be written as ##\widetilde{A} = A^{i\delta}##. Writing the Complex Wave equation, we have ##\vec E(t) = \widetilde{A}e^{(-kz-\Omega t)} \hat x##. Therefore the real part is ##\vec E(t) =Ae^{(-kz-\Omega t+\delta)} \hat x##. The negative in front of kz indicates it is a left traveling wave.
The problem statement said the wave travels in the ##-x## direction. Your answer isn't sinusoidal. It decays with time. What is ##\delta##?

b.) The unit vector of ##\hat B = \frac{(\hat x - 2\hat z)}{\sqrt{5}}##. I know that ##\hat E## must be perpendicular to ##\hat B##, so simply,
##\hat E = \frac{(\hat x + 2\hat z)}{\sqrt{5}}##
It doesn't look like ##\hat E \cdot \hat B=0##.
 
  • Like
Likes   Reactions: topsquark
vela said:
The problem statement said the wave travels in the ##-x## direction. Your answer isn't sinusoidal. It decays with time. What is ##\delta##?
You're right. I should have ##\vec E(t) =Acos{(-kz-\Omega t+\delta)} \hat x##
##\delta## is the phase
So I need to make ##\hat x## be ##\hat - x## as well as account for it is a wave traveling left by the ##-kz## in the ##cos##?

I assumed the ##-kz## in the ##cos## accounted for the negative direction.
 
guyvsdcsniper said:
I assumed the ##-kz## in the ##cos## accounted for the negative direction.
In the ##-z## direction, not the ##-x## direction.
 
Hint: The wave travels in the negative ##x## direction and the ##\vec{B}##-field (sic!) is polarized in ##z##-direction. So the complex ansatz for ##\vec{B}## is (using the HEP physicists' convention concerning the signs in the exponential)
$$\vec{B}=A \vec{e}_z \exp(-\mathrm{i} \Omega t-\mathrm{i} k x), \quad \Omega,k>0.$$
Now just use the source-free Maxwell equations to get the dispersion relation ##\Omega=\Omega(k)## and the ##\vec{E}##-field!
 
I figured it out. I had a big misunderstanding on the equations I was using but took the time to read through my book and was able to come to the correct answer. Thanks all for the help!
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
19
Views
3K