Determining Electric and Magnetic field given certain conditions

Click For Summary

Homework Help Overview

The discussion revolves around determining electric and magnetic fields in the context of wave propagation, specifically focusing on the relationships between these fields and their representations in complex notation. Participants are exploring the implications of wave direction and the mathematical expressions involved.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the representation of the electric field in complex notation and its real part, questioning the sinusoidal nature of the wave and the implications of the phase term. There is also exploration of the relationship between the electric and magnetic fields, particularly their perpendicularity and the conditions under which they exist.

Discussion Status

Some participants have provided hints regarding the direction of wave travel and the polarization of the magnetic field. There is an ongoing examination of the mathematical expressions used, with some participants expressing uncertainty about their interpretations and assumptions. A participant has indicated a resolution of their misunderstanding after reviewing their materials.

Contextual Notes

Participants are navigating the complexities of wave equations and Maxwell's equations, with specific attention to the direction of wave propagation and the relationships between the fields. There are indications of confusion regarding the correct application of these concepts, particularly in relation to the signs in the equations.

guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
Refer to attached image
Relevant Equations
comlplex wave equation,
Screen Shot 2022-10-06 at 11.06.55 AM.png

I am unsure of my solutions and am looking for some guidance. a.)The real part of the wave in complex notation can be written as ##\widetilde{A} = A^{i\delta}##. Writing the Complex Wave equation, we have ##\vec E(t) = \widetilde{A}e^{(-kz-\Omega t)} \hat x##. Therefore the real part is ##\vec E(t) =Ae^{(-kz-\Omega t+\delta)} \hat x##. The negative in front of kz indicates it is a left traveling wave.

b.) The unit vector of ##\hat B = \frac{(\hat x - 2\hat z)}{\sqrt{5}}##. I know that ##\hat E## must be perpendicular to ##\hat B##, so simply,
##\hat E = \frac{(\hat x + 2\hat z)}{\sqrt{5}}##

c.) I am not so sure about this problem. I know that ##\vec E = \widetilde{E}_oe^{i(ky-wt)}\hat x##
Griffiths states ##\widetilde{B}_o = \widetilde{E}_o/c## and ##v=c/n##.

So ##\vec B = \frac{c\widetilde{E}_o}{1.7}e^{i(ky-wt)}\hat z##
 
Physics news on Phys.org
guyvsdcsniper said:
a.)The real part of the wave in complex notation can be written as ##\widetilde{A} = A^{i\delta}##. Writing the Complex Wave equation, we have ##\vec E(t) = \widetilde{A}e^{(-kz-\Omega t)} \hat x##. Therefore the real part is ##\vec E(t) =Ae^{(-kz-\Omega t+\delta)} \hat x##. The negative in front of kz indicates it is a left traveling wave.
The problem statement said the wave travels in the ##-x## direction. Your answer isn't sinusoidal. It decays with time. What is ##\delta##?

b.) The unit vector of ##\hat B = \frac{(\hat x - 2\hat z)}{\sqrt{5}}##. I know that ##\hat E## must be perpendicular to ##\hat B##, so simply,
##\hat E = \frac{(\hat x + 2\hat z)}{\sqrt{5}}##
It doesn't look like ##\hat E \cdot \hat B=0##.
 
  • Like
Likes   Reactions: topsquark
vela said:
The problem statement said the wave travels in the ##-x## direction. Your answer isn't sinusoidal. It decays with time. What is ##\delta##?
You're right. I should have ##\vec E(t) =Acos{(-kz-\Omega t+\delta)} \hat x##
##\delta## is the phase
So I need to make ##\hat x## be ##\hat - x## as well as account for it is a wave traveling left by the ##-kz## in the ##cos##?

I assumed the ##-kz## in the ##cos## accounted for the negative direction.
 
guyvsdcsniper said:
I assumed the ##-kz## in the ##cos## accounted for the negative direction.
In the ##-z## direction, not the ##-x## direction.
 
Hint: The wave travels in the negative ##x## direction and the ##\vec{B}##-field (sic!) is polarized in ##z##-direction. So the complex ansatz for ##\vec{B}## is (using the HEP physicists' convention concerning the signs in the exponential)
$$\vec{B}=A \vec{e}_z \exp(-\mathrm{i} \Omega t-\mathrm{i} k x), \quad \Omega,k>0.$$
Now just use the source-free Maxwell equations to get the dispersion relation ##\Omega=\Omega(k)## and the ##\vec{E}##-field!
 
I figured it out. I had a big misunderstanding on the equations I was using but took the time to read through my book and was able to come to the correct answer. Thanks all for the help!
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
19
Views
3K