RicardoMP
- 48
- 2
I have the following matrix given by a basis \left|1\right\rangle and \left|2\right\rangle:
<br /> \begin{bmatrix}<br /> E_0 &-A \\<br /> -A & E_0<br /> \end{bmatrix}<br />
Eventually I found the matrix eigenvalues E_I=E_0-A and E_{II}=E_0+A and eigenvectors \left|I\right\rangle = \begin{bmatrix}<br /> \frac{1}{\sqrt{2}}\\<br /> \frac{1}{\sqrt{2}}<br /> \end{bmatrix} and \left|II\right\rangle=\begin{bmatrix}<br /> \frac{1}{\sqrt{2}}\\<br /> -\frac{1}{\sqrt{2}}<br /> \end{bmatrix}.
I found out in the solutions of further problems that I can write these vectors as \left|I\right\rangle=\frac{1}{\sqrt{2}}\left|1\right\rangle+\frac{1}{\sqrt{2}}\left|2\right\rangle and\left|II\right\rangle=\frac{1}{\sqrt{2}}\left|1\right\rangle-\frac{1}{\sqrt{2}}\left|2\right\rangle
But why do we assume that \left|1\right\rangle=<br /> \begin{bmatrix}<br /> 1 \\<br /> 0<br /> \end{bmatrix}<br /> and \left|2\right\rangle=<br /> \begin{bmatrix}<br /> 0 \\<br /> 1<br /> \end{bmatrix} ?<br />
Is this canonical basis, a basis of every matrix?
<br /> \begin{bmatrix}<br /> E_0 &-A \\<br /> -A & E_0<br /> \end{bmatrix}<br />
Eventually I found the matrix eigenvalues E_I=E_0-A and E_{II}=E_0+A and eigenvectors \left|I\right\rangle = \begin{bmatrix}<br /> \frac{1}{\sqrt{2}}\\<br /> \frac{1}{\sqrt{2}}<br /> \end{bmatrix} and \left|II\right\rangle=\begin{bmatrix}<br /> \frac{1}{\sqrt{2}}\\<br /> -\frac{1}{\sqrt{2}}<br /> \end{bmatrix}.
I found out in the solutions of further problems that I can write these vectors as \left|I\right\rangle=\frac{1}{\sqrt{2}}\left|1\right\rangle+\frac{1}{\sqrt{2}}\left|2\right\rangle and\left|II\right\rangle=\frac{1}{\sqrt{2}}\left|1\right\rangle-\frac{1}{\sqrt{2}}\left|2\right\rangle
But why do we assume that \left|1\right\rangle=<br /> \begin{bmatrix}<br /> 1 \\<br /> 0<br /> \end{bmatrix}<br /> and \left|2\right\rangle=<br /> \begin{bmatrix}<br /> 0 \\<br /> 1<br /> \end{bmatrix} ?<br />
Is this canonical basis, a basis of every matrix?