Diagonalizing of Hamiltonian of electron and positron system

Davidllerenav
Messages
424
Reaction score
14
Homework Statement
The spin-dependant Hamiltonian of an electron-positron system in the presence of a uniform magnetic field in the z-direction ##(\vec{B}=B\vec{k})## can be written as

##\hat{H}=\lambda \hat{\vec{S}}_1\cdot\hat{\vec{S}}_2+\left(\frac{eB}{mc}\right)(\hat{S}_{1_z}-\hat{S}_{2_z})##

##\lambda## is a constant and ##\hat{\vec{S}}_1## and ##\hat{\vec{S}}_2## are the Spin operators of the electro and positron respectively. Find the energy eigenvalues and eigenvectors by diagonalizing the Hamiltonian
Relevant Equations
##\hat{\vec{S}}=\hat{\vec{S}}_1+\hat{\vec{S}}_2##
##s_1=1/2##
##s_2=1/2##
##m_1=\pm 1/2##
##m_2=\pm 1/2##
##m=m_1+m_2##
##s=0,1##
What I did was first noting that ##\hat{\vec{S}}_1\cdot\hat{\vec{S}}_2=\frac{1}{2}(\hat{\vec{S}}^2-\hat{\vec{S}}_1^2-\hat{\vec{S}}_2^2)##, but these operators don't commute with ##\hat{S}_{1_z}## and ##\hat{S}_{2_z}##, this non the decoupled basis ##\ket{s_1,s_2;m_1,m_2}## nor the coupled one ##\ket{s,m}## are eigenfunctions of this Hamiltonian. So I need to find the eigenvectors.

I tried to find the matrix of the Hamiltonian, but I'm confused about how should I write the components of the matrix, since I've only done it when I have a given ##s##, but here I have ##s=0,1##. All I know is that the matrix must be a ##4\times 4## one.
 
Physics news on Phys.org
Davidllerenav said:
I tried to find the matrix of the Hamiltonian, but I'm confused about how should I write the components of the matrix, since I've only done it when I have a given ##s##, but here I have ##s=0,1##. All I know is that the matrix must be a ##4\times 4## one.
You can choose any convenient set of basis states for the system. For example, you could choose the four direct-product states

##\ket{1} = \ket{\uparrow}_e \ket{\uparrow}_p \equiv \ket{\uparrow \uparrow}##
##\ket{2} = \ket{\downarrow}_e \ket{\uparrow}_p \equiv \ket{\downarrow \uparrow}##
##\ket{3} = \ket{\uparrow}_e \ket{\downarrow}_p \equiv \ket{\uparrow \downarrow}##
##\ket{4} = \ket{\downarrow}_e \ket{\downarrow}_p \equiv \ket{\downarrow \downarrow}##

The arrows denote spin up or down along the z-axis.

Can you find the matrix elements of ##H## in this basis, such as ##H_{32} = \bra{3} H \ket{2}##?

Note, for example, that $$\hat S_{1_y} \hat S_{2_y} \ket{2} = \hat S_{e_y} \hat S_{p_y}\ket{2} = \hat S_{e_y}\hat S_{p_y}\ket{\downarrow \uparrow} \equiv \left( \hat S_{e_y} \ket{\downarrow}_e \right) \left( \hat S_{p_y} \ket{\uparrow}_p \right) = \left(- i \frac{\hbar}{2}\ket{\uparrow}_e \right) \left(i \frac{\hbar}{2} \ket{\downarrow}_p \right) = \frac{\hbar^2}{4}\ket{\uparrow \downarrow} = \frac{\hbar^2}{4}\ket{3} $$
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top