Different forms of Stokes' theorem

  • Thread starter Thread starter MatinSAR
  • Start date Start date
  • Tags Tags
    Vector
Click For Summary
The discussion revolves around the application of Stokes' theorem to the vector field defined as ##\vec V=\vec a \phi##. The right-hand side is evaluated as ##\vec a \cdot \oint \phi d \vec \lambda##, while the left-hand side involves the curl of the vector field, leading to the expression ##\phi \vec \nabla \times \vec a + (\vec \nabla \phi) \times \vec a##. Initially, it was thought that both terms could be zero, but it was clarified that ##\phi \vec \nabla \times \vec a## is zero due to ##\vec a## being constant, while ##(\vec \nabla \phi) \times \vec a## is not zero and can be rewritten as ##\vec a \times (\vec \nabla \phi)##. The conclusion reached is that the left-hand side equals the right-hand side, confirming the validity of the application of Stokes' theorem in this context.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
Find the different forms using ##\vec V=\vec a \phi## and ##\vec V=\vec a \times \vec P## for constant ##\vec a##.
Relevant Equations
Stokes' theorem.
What am I trying to do for ##\vec V=\vec a \phi## :
##R.H.S= \oint \vec V \cdot d \vec \lambda=\oint \vec a \phi \cdot d \vec \lambda=\vec a \cdot \oint \phi d \vec \lambda ##

##L.H.S= \iint_S \vec \nabla \times \vec V \cdot \vec d \sigma=\iint_S \vec \nabla \times (\vec a \phi) \cdot \vec d \sigma=\iint_S (\phi \vec \nabla \times \vec a + (\vec \nabla \phi) \times \vec a) \cdot \vec d \sigma= ?##
I think ##\phi \vec \nabla \times \vec a + (\vec \nabla \phi) \times \vec a## should be 0. why is this wrong?

##\phi \vec \nabla \times \vec a## is 0 because ##\vec a## is a constant vector.
##(\vec \nabla \phi) \times \vec a## is 0 because ##\vec \nabla## acts on both ##\phi## and ##\vec a## so it should be zero.

Edit:
Now I think ##(\vec \nabla \phi) \times \vec a## is not 0 because ##\vec \nabla## acts only on ##\phi## so we can rewrite it as ##- \vec a \times (\vec \nabla \phi).##
 
Last edited:
Physics news on Phys.org
MatinSAR said:
Now I think ##(\vec \nabla \phi) \times \vec a## is not 0 because ##\vec \nabla## acts only on ##\phi## so we can rewrite it as ##\vec a \times (\vec \nabla \phi).##
Right.
 
haruspex said:
Right.
Thanks for the reply @haruspex .
##L.H.S= \iint_S \vec \nabla \times \vec V \cdot d \vec \sigma=\iint_S \vec \nabla \times (\vec a \phi) \cdot d \vec \sigma=\iint_S (\phi \vec \nabla \times \vec a + (\vec \nabla \phi) \times \vec a) \cdot d \vec \sigma=##
##- \iint_S \vec a \times (\vec \nabla \phi) \cdot d \vec \sigma=- \iint_S \vec a \cdot (\vec \nabla \phi) \times d \vec \sigma=\vec a \cdot \iint_S d \vec \sigma \times (\vec \nabla \phi) ##
L.H.S = R.H.S
##\vec a \cdot \iint_S d \vec \sigma \times (\vec \nabla \phi) = \vec a \cdot \oint \phi d \vec \lambda ##
##\iint_S d \vec \sigma \times (\vec \nabla \phi) = \oint \phi d \vec \lambda##

I hope I won't have problem with other part. (##\vec V=\vec a \times \vec P##)
 
I've managed to prove 2nd part using what I've learnt here : https://www.physicsforums.com/threads/vector-operators-grad-div-and-curl.1057533/

But I'm not sure if my proof is mathematically true or it is nonsense. Picture of my work:
2023_12_23 3_15 PM Office Lens.jpg


I would be grateful if someone could point out the problem with my proof.
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

Replies
2
Views
924
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
966
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
64
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K