Different forms of Stokes' theorem

  • Thread starter Thread starter MatinSAR
  • Start date Start date
  • Tags Tags
    Vector
AI Thread Summary
The discussion revolves around the application of Stokes' theorem to the vector field defined as ##\vec V=\vec a \phi##. The right-hand side is evaluated as ##\vec a \cdot \oint \phi d \vec \lambda##, while the left-hand side involves the curl of the vector field, leading to the expression ##\phi \vec \nabla \times \vec a + (\vec \nabla \phi) \times \vec a##. Initially, it was thought that both terms could be zero, but it was clarified that ##\phi \vec \nabla \times \vec a## is zero due to ##\vec a## being constant, while ##(\vec \nabla \phi) \times \vec a## is not zero and can be rewritten as ##\vec a \times (\vec \nabla \phi)##. The conclusion reached is that the left-hand side equals the right-hand side, confirming the validity of the application of Stokes' theorem in this context.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
Find the different forms using ##\vec V=\vec a \phi## and ##\vec V=\vec a \times \vec P## for constant ##\vec a##.
Relevant Equations
Stokes' theorem.
What am I trying to do for ##\vec V=\vec a \phi## :
##R.H.S= \oint \vec V \cdot d \vec \lambda=\oint \vec a \phi \cdot d \vec \lambda=\vec a \cdot \oint \phi d \vec \lambda ##

##L.H.S= \iint_S \vec \nabla \times \vec V \cdot \vec d \sigma=\iint_S \vec \nabla \times (\vec a \phi) \cdot \vec d \sigma=\iint_S (\phi \vec \nabla \times \vec a + (\vec \nabla \phi) \times \vec a) \cdot \vec d \sigma= ?##
I think ##\phi \vec \nabla \times \vec a + (\vec \nabla \phi) \times \vec a## should be 0. why is this wrong?

##\phi \vec \nabla \times \vec a## is 0 because ##\vec a## is a constant vector.
##(\vec \nabla \phi) \times \vec a## is 0 because ##\vec \nabla## acts on both ##\phi## and ##\vec a## so it should be zero.

Edit:
Now I think ##(\vec \nabla \phi) \times \vec a## is not 0 because ##\vec \nabla## acts only on ##\phi## so we can rewrite it as ##- \vec a \times (\vec \nabla \phi).##
 
Last edited:
Physics news on Phys.org
MatinSAR said:
Now I think ##(\vec \nabla \phi) \times \vec a## is not 0 because ##\vec \nabla## acts only on ##\phi## so we can rewrite it as ##\vec a \times (\vec \nabla \phi).##
Right.
 
haruspex said:
Right.
Thanks for the reply @haruspex .
##L.H.S= \iint_S \vec \nabla \times \vec V \cdot d \vec \sigma=\iint_S \vec \nabla \times (\vec a \phi) \cdot d \vec \sigma=\iint_S (\phi \vec \nabla \times \vec a + (\vec \nabla \phi) \times \vec a) \cdot d \vec \sigma=##
##- \iint_S \vec a \times (\vec \nabla \phi) \cdot d \vec \sigma=- \iint_S \vec a \cdot (\vec \nabla \phi) \times d \vec \sigma=\vec a \cdot \iint_S d \vec \sigma \times (\vec \nabla \phi) ##
L.H.S = R.H.S
##\vec a \cdot \iint_S d \vec \sigma \times (\vec \nabla \phi) = \vec a \cdot \oint \phi d \vec \lambda ##
##\iint_S d \vec \sigma \times (\vec \nabla \phi) = \oint \phi d \vec \lambda##

I hope I won't have problem with other part. (##\vec V=\vec a \times \vec P##)
 
I've managed to prove 2nd part using what I've learnt here : https://www.physicsforums.com/threads/vector-operators-grad-div-and-curl.1057533/

But I'm not sure if my proof is mathematically true or it is nonsense. Picture of my work:
2023_12_23 3_15 PM Office Lens.jpg


I would be grateful if someone could point out the problem with my proof.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top