Differential Amplifier Common Mode Thevenin Equivalent

AI Thread Summary
The discussion focuses on the small signal analysis of a MOSFET differential amplifier, specifically regarding its common-mode equivalent circuit. The initial confusion arises from the characterization of a Norton equivalent circuit, which the author believes does not align with the typical definition involving a parallel resistance and current source. The second figure presents a Thevenin equivalent resistance as just RL, leading to a calculation that initially appears incorrect. Upon further analysis, the author realizes that neglecting to turn off the common-mode input voltage (vc) affects the dependent current source, which should not be the case for a proper Thevenin equivalent. This insight clarifies the situation, highlighting the importance of correctly shutting down vc to obtain the accurate Thevenin equivalent resistance.
anvoice
Messages
16
Reaction score
3
TL;DR Summary
A sanity check on a text I am using to learn EE. Cannot replicate the result for the common mode Thevenin resistance in a figure in the text.
I am currently reading about small signal analysis of a MOSFET differential amplifier. The text I am using has the below two figures for a common-mode equivalent circuit for the amplifier. The first makes sense to me except where it calls it a "Norton equivalent circuit", whereas I thought a Norton between either the vx or vy terminals would need to have a single resistance in parallel with a current source, and I don't see how this qualifies.
More importantly, the second figure has the Thevenin equivalent resistance as just RL. Seeing that exciting the subcircuits on the leftmost figure with a voltage and measuring the current seems to be a reasonable way of finding Rth in this case, I did that and ended up with a Rth of
2RL / (2 + (RL) x (vc)). Am I missing something major or is this a typo in the text? Granted it doesn't invalidate the main result (vx - vy = 0), it bothers me.

DiffAmp.png
 
Engineering news on Phys.org
I think I figured it out. Looking at just this subcircuit, I forgot to shut down the signal vc (common-mode input) to the MOSFETs. If vc is off, naturally the dependent current source becomes an open circuit and the resistance is indeed RL. It is also a warning sign in this case that if you forget to shut down vc, the Thevenin equivalent resistance is actually dependent on the excitation voltage, which shouldn't be the case. The hints were there, but just managed to piece them together.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Back
Top