- #1
- 4
- 2
Hi all! I was messing around with the equation for time dilation. What I wanted to do was see how the time of a moving observer ##t'## changed with respect to the time of a stationary observer ##t##. So I differentiated the equation for time dilation ##t'## with respect to ##t##:
$$\frac {dt'} {dt}=\frac {d} {dt}\frac t {\sqrt {1 - \frac {v^2} {c^2}}}$$
Where ##v=\frac {dx} {dt}##. This gave me the following result:
$$\frac {dt'} {dt}=γ+\frac {tva} {γc^2}$$
Where ##γ=\frac 1 {\sqrt {1 - \frac {v^2} {c^2}}}## and ##a=\frac {d^2x} {dt^2}##.
For one, I found this pretty interesting already, especially the product ##tva## in the numerator of the second term. Rewriting this in terms of the position of the moving observer ##x(t)## should help with I'm asking for:
$$\frac {dt'} {dt}=\frac 1 {\sqrt {1 - \frac {x'^2} {c^2}}}+\frac {tx'x''} {c^2}\sqrt {1 - \frac {x'^2} {c^2}}$$
I'm interested in finding a solution for when the change in the time of the moving observer with respect to the time of the stationary observer is zero, or ##\frac {dt'} {dt}=0##. More specifically, I'm trying to find a position function ##x(t)## that satisfies the differential equation:
$$0=\frac 1 {\sqrt {1 - \frac {x'^2} {c^2}}}+\frac {tx'x''} {c^2}\sqrt {1 - \frac {x'^2} {c^2}}$$
I'm not too great with differential equations (especially of this caliber) so I'm having some trouble solving this. Can any of you help me out here to find a generalized solution for ##x(t)##?
Thank you!
(Also, I'd love to hear your interpretations of my result for ##\frac {dt'} {dt}##!)
$$\frac {dt'} {dt}=\frac {d} {dt}\frac t {\sqrt {1 - \frac {v^2} {c^2}}}$$
Where ##v=\frac {dx} {dt}##. This gave me the following result:
$$\frac {dt'} {dt}=γ+\frac {tva} {γc^2}$$
Where ##γ=\frac 1 {\sqrt {1 - \frac {v^2} {c^2}}}## and ##a=\frac {d^2x} {dt^2}##.
For one, I found this pretty interesting already, especially the product ##tva## in the numerator of the second term. Rewriting this in terms of the position of the moving observer ##x(t)## should help with I'm asking for:
$$\frac {dt'} {dt}=\frac 1 {\sqrt {1 - \frac {x'^2} {c^2}}}+\frac {tx'x''} {c^2}\sqrt {1 - \frac {x'^2} {c^2}}$$
I'm interested in finding a solution for when the change in the time of the moving observer with respect to the time of the stationary observer is zero, or ##\frac {dt'} {dt}=0##. More specifically, I'm trying to find a position function ##x(t)## that satisfies the differential equation:
$$0=\frac 1 {\sqrt {1 - \frac {x'^2} {c^2}}}+\frac {tx'x''} {c^2}\sqrt {1 - \frac {x'^2} {c^2}}$$
I'm not too great with differential equations (especially of this caliber) so I'm having some trouble solving this. Can any of you help me out here to find a generalized solution for ##x(t)##?
Thank you!
(Also, I'd love to hear your interpretations of my result for ##\frac {dt'} {dt}##!)