Differential Equation Initial Value Problem

Click For Summary
The discussion centers on solving the initial value problem for the differential equation y''' + 4y' = x with specified initial conditions. The user successfully determined the homogeneous solution, yc, and derived it as yc = (1/4) - (1/4)cos(2x). However, there is uncertainty regarding the particular solution, yp, which was initially guessed as yp = Ax^3 + Bx^2 + Cx + D, leading to incorrect coefficients. Another participant suggests that the correct form of yp should be yp = (1/8)x^2, indicating that the user needs to reevaluate their approach to finding the particular solution. The conversation emphasizes the importance of correctly combining the general solution before applying initial conditions.
heartilly89
Messages
3
Reaction score
0

Homework Statement



I managed to work this problem all the way through, but I am in no way certain of my answer. I'd greatly appreciate any insight!

Find the solution of the initial value problem.

y'''+4y'=x, y(0)=y'(0)=0, y''(0)=1

Homework Equations



Just for clarification purposes, my professor uses yc for the general homogeneous solution; I've seen yh used and didn't want to cause confusion.

fn(x)y(n)+fn-1(x)y(n-1)+...+f1(x)y'+f0(x)y=0

General solution: yc=c1y1(x)+c2y2(x)+...+cnyn(x)

The Attempt at a Solution



Note: m is used as the variable for characteristic equations rather than r, which I've also seen.

First, to find yc, I set the left side of the equation equal to zero and found the characteristic equation m3+4m=0, from which I found roots 0, 2i, -2i. I converted them into real solutions and ended up with yc=c1+c2cos(2x)+c3sin(2x).

To find c1 and c2, I took the first and second derivatives of yc and plugged in the initial values as given. I ended up with yc=(1/4)-(1/4)cos(2x).

Next, to find yp, I guessed yp=Ax3+Bx2+Cx+D and plugged its first and third derivatives into the original differential equation. I ended up finding A=0, B=1/8, C=-1/2. That gave me yp=(1/8)x2-(1/2)x.

I got the general solution to the heterogeneous differential equation y=yc+yp:
y=(1/4)-(1/4)cos(2x)+(1/8)x2-(1/2)x.
 
Physics news on Phys.org
heartilly89 said:

Homework Statement



I managed to work this problem all the way through, but I am in no way certain of my answer. I'd greatly appreciate any insight!

Find the solution of the initial value problem.

y'''+4y'=x, y(0)=y'(0)=0, y''(0)=1

Homework Equations



Just for clarification purposes, my professor uses yc for the general homogeneous solution; I've seen yh used and didn't want to cause confusion.

fn(x)y(n)+fn-1(x)y(n-1)+...+f1(x)y'+f0(x)y=0

General solution: yc=c1y1(x)+c2y2(x)+...+cnyn(x)

The Attempt at a Solution



Note: m is used as the variable for characteristic equations rather than r, which I've also seen.

First, to find yc, I set the left side of the equation equal to zero and found the characteristic equation m3+4m=0, from which I found roots 0, 2i, -2i. I converted them into real solutions and ended up with yc=c1+c2cos(2x)+c3sin(2x).

To find c1 and c2, I took the first and second derivatives of yc and plugged in the initial values as given. I ended up with yc=(1/4)-(1/4)cos(2x).

Next, to find yp, I guessed yp=Ax3+Bx2+Cx+D and plugged its first and third derivatives into the original differential equation. I ended up finding A=0, B=1/8, C=-1/2. That gave me yp=(1/8)x2-(1/2)x.

I got the general solution to the heterogeneous differential equation y=yc+yp:
y=(1/4)-(1/4)cos(2x)+(1/8)x2-(1/2)x.

I didn't check your work, but I can tell you that you must first write the general solution ##y = y_c + y_p## before you evaluate the constants with the initial conditions.
 
I thought that might be the case, but I tried it and came up with a bunch of long, crazy rational expressions with several radicals. I'll try again.

If anyone reading knows how to do it correctly, I'd be eternally grateful for your help!
 
Your ##y_p## isn't correct. You should get ##y_p = \frac{x^2} 8##. You can check that it works. And you won't get radicals anywhere.
 
I'll start working on getting it right now; thank you so much!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
7
Views
2K
Replies
3
Views
2K