1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Differential equations - exact equations w/ integ factor

  1. Feb 28, 2007 #1
    The differential equation (e^t)(sec y) - tan y + dy/dt = 0 has an integrating factor (e^-at)(cos y) for some constant a. Find a, and then solve the differential equation.

    ANSWER: a=1, y(t) = arc sin [(c-t)e^t]



    Attempt:
    (e^t)(sec y) - tan y + dy/dt = 0
    i multiplied eq'n by integrating factor (e^-at)(cos y)
    (e^t)(sec y)(e^-at)(cos y) - tan y(e^-at)(cos y) + (e^-at)(cos y)dy/dt = 0
    e^-2at - e^-at sin y + e^-at cos y dy/dt = 0

    dM(t,y)/dy = - (e^-at)(cos y)
    dN(t,y)/dt = -a (e^-at)(cos y)

    set dm(t,y)/dy = dn(t,y)/dt
    -(e^-at)(cos y) = -a(e^-at)(cos y)
    a = 1 [which is correct.]

    .'. the equation is e^-2t - e^-t sin y + e^-t cos y dy/dt = 0

    df(t,y)/dt = M(t,y)
    df(t,y)/dy = N(t,y)

    f(t,y)=integ(M(t,y)dt) + h(y)
    f(t,y)=integ(e^-2t - e^-t sin y dy) + h(y)
    f(t,y)=-1/2e^-2t - (- e^-t)(sin y) + h(y)
    f(t,y)= -1/2e^-2t + e^-t sin y + h(y)

    df(t,y)/dy = e^-t cos y + dh(y)/dy
    e^-t cos y = e^-t cos y + dh(y)/dy
    dh(y)/dy = 0
    h(y) = integ(0 dy) + c
    h(y) = c

    .'. f(t,y) = -1/2e^-2t + e^-t sin y + c
    -1/2e^-2t + e^-t sin y = C
    -e^-2t + 2e^-t sin y = 2C
    2e^-t sin y = 2C+e^-2t
    sin y = (2C + e^-2t)/2e^-t
    sin y = Ce^t + e^-t
    y(t) = arc sin [Ce^t + e^-t]
    C1 = Ce^t
    y(t) = arc sin [C1 + e^-t]

    i cannot get the answer given..
    what have i done wrong



     
  2. jcsd
  3. Feb 28, 2007 #2

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    [tex] \frac{e^{t}}{\cos y}-\tan y+\frac{dy}{dt}=0 \ \left\right| e^{-t}\cos y [/tex]

    [tex] 1-e^{-t}\sin y +e^{-t}\cos y \frac{dy}{dt} =0 [/tex]

    [tex] 1-e^{-t}\sin y +\frac{d}{dt}\left(e^{-t}\sin y\right)+e^{-t}\sin y=0 [/tex]

    [tex] \frac{d}{dt}\left(e^{-t}\sin y\right) =-1 [/tex]

    [tex] e^{-t}\sin y =-t+C [/tex]

    [tex] y=\arcsin\left(-te^t +Ce^t\right) [/tex]
     
  4. Feb 28, 2007 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    Your mistake was not going back to the original differential equation which was etsec y - tan y + dy/dt = 0. Since sec y= 1/cos y and tan y= sin y/cos y, once you multiply by e-t[/sup cos y, that equation becomes 1- e-tsin y + e-tcos y dy/dt= 0 or, in differential form,
    (1- e-tsin y)dt+ e-tcos y dy= 0
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Differential equations - exact equations w/ integ factor
Loading...