- #1
- 162
- 0
The differential equation (e^t)(sec y) - tan y + dy/dt = 0 has an integrating factor (e^-at)(cos y) for some constant a. Find a, and then solve the differential equation.
ANSWER: a=1, y(t) = arc sin [(c-t)e^t]
Attempt:
(e^t)(sec y) - tan y + dy/dt = 0
i multiplied eq'n by integrating factor (e^-at)(cos y)
(e^t)(sec y)(e^-at)(cos y) - tan y(e^-at)(cos y) + (e^-at)(cos y)dy/dt = 0
e^-2at - e^-at sin y + e^-at cos y dy/dt = 0
dM(t,y)/dy = - (e^-at)(cos y)
dN(t,y)/dt = -a (e^-at)(cos y)
set dm(t,y)/dy = dn(t,y)/dt
-(e^-at)(cos y) = -a(e^-at)(cos y)
a = 1 [which is correct.]
.'. the equation is e^-2t - e^-t sin y + e^-t cos y dy/dt = 0
df(t,y)/dt = M(t,y)
df(t,y)/dy = N(t,y)
f(t,y)=integ(M(t,y)dt) + h(y)
f(t,y)=integ(e^-2t - e^-t sin y dy) + h(y)
f(t,y)=-1/2e^-2t - (- e^-t)(sin y) + h(y)
f(t,y)= -1/2e^-2t + e^-t sin y + h(y)
df(t,y)/dy = e^-t cos y + dh(y)/dy
e^-t cos y = e^-t cos y + dh(y)/dy
dh(y)/dy = 0
h(y) = integ(0 dy) + c
h(y) = c
.'. f(t,y) = -1/2e^-2t + e^-t sin y + c
-1/2e^-2t + e^-t sin y = C
-e^-2t + 2e^-t sin y = 2C
2e^-t sin y = 2C+e^-2t
sin y = (2C + e^-2t)/2e^-t
sin y = Ce^t + e^-t
y(t) = arc sin [Ce^t + e^-t]
C1 = Ce^t
y(t) = arc sin [C1 + e^-t]
i cannot get the answer given..
what have i done wrong
ANSWER: a=1, y(t) = arc sin [(c-t)e^t]
Attempt:
(e^t)(sec y) - tan y + dy/dt = 0
i multiplied eq'n by integrating factor (e^-at)(cos y)
(e^t)(sec y)(e^-at)(cos y) - tan y(e^-at)(cos y) + (e^-at)(cos y)dy/dt = 0
e^-2at - e^-at sin y + e^-at cos y dy/dt = 0
dM(t,y)/dy = - (e^-at)(cos y)
dN(t,y)/dt = -a (e^-at)(cos y)
set dm(t,y)/dy = dn(t,y)/dt
-(e^-at)(cos y) = -a(e^-at)(cos y)
a = 1 [which is correct.]
.'. the equation is e^-2t - e^-t sin y + e^-t cos y dy/dt = 0
df(t,y)/dt = M(t,y)
df(t,y)/dy = N(t,y)
f(t,y)=integ(M(t,y)dt) + h(y)
f(t,y)=integ(e^-2t - e^-t sin y dy) + h(y)
f(t,y)=-1/2e^-2t - (- e^-t)(sin y) + h(y)
f(t,y)= -1/2e^-2t + e^-t sin y + h(y)
df(t,y)/dy = e^-t cos y + dh(y)/dy
e^-t cos y = e^-t cos y + dh(y)/dy
dh(y)/dy = 0
h(y) = integ(0 dy) + c
h(y) = c
.'. f(t,y) = -1/2e^-2t + e^-t sin y + c
-1/2e^-2t + e^-t sin y = C
-e^-2t + 2e^-t sin y = 2C
2e^-t sin y = 2C+e^-2t
sin y = (2C + e^-2t)/2e^-t
sin y = Ce^t + e^-t
y(t) = arc sin [Ce^t + e^-t]
C1 = Ce^t
y(t) = arc sin [C1 + e^-t]
i cannot get the answer given..
what have i done wrong