technician
- 1,506
- 18
Put some values in and follow it through.
Suppose the battery connected to the + input is 2V and the input resistor is 1kΩ.
The feedback resistor we will have as 2kΩ and the resistor on the output we will have as 500Ω
The volts at the + and - inputs must be equal (remember) so there is a voltage of 2V across this 1kΩ resistor. This means a current of 2/1000 A flows down the 1kΩresistor. This current must come from the output of the amplifier and flows through the 2kΩ resistor.
This means that the voltage across the 2kΩ resistor = 2x10^-3 x 2000 = 4V.
The voltage at the -input is 2V so the voltage at the output of the amplifier =2 + 4 = +6V
This means there is a current through the output resistor (you could call it the 'load' resistor)
of 6/500 = 0.012A.
What do you think of that?
Suppose the battery connected to the + input is 2V and the input resistor is 1kΩ.
The feedback resistor we will have as 2kΩ and the resistor on the output we will have as 500Ω
The volts at the + and - inputs must be equal (remember) so there is a voltage of 2V across this 1kΩ resistor. This means a current of 2/1000 A flows down the 1kΩresistor. This current must come from the output of the amplifier and flows through the 2kΩ resistor.
This means that the voltage across the 2kΩ resistor = 2x10^-3 x 2000 = 4V.
The voltage at the -input is 2V so the voltage at the output of the amplifier =2 + 4 = +6V
This means there is a current through the output resistor (you could call it the 'load' resistor)
of 6/500 = 0.012A.
What do you think of that?